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Abstract

This thesis describes a series of multiphoton microwave experiments on Rydberg

atoms when the microwave frequency is much greater than the classical Kepler

frequency of the excited atoms. A new kHz pulse repetition frequency dye laser

system was constructed for Rydberg lithium excitation with a linewidth as nar-

row as 3 GHz. This new laser system is used for first experiments of multiphoton

microwave ionization of Rydberg lithium approaching the photoionization limit

using 17 and 36 GHz microwave pulses. A multi-channel quantum defect model is

presented that well describes the experimental results, indicating that these results

are due to the coherent coupling of many atomic levels both above and below the

classical ionization limit. Finally, preliminary results of measuring the final-state

distributions of high lying Rydberg states after 17 GHz microwave pulses are pre-

sented.
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Chapter 1

Introduction

1.1 Rydberg Atoms

Highly excited atoms, or Rydberg atoms, in external fields have long been a rich

subject of investigation in atomic physics. Rydberg atoms, with one or more elec-

trons with large principal quantum number n, are highly sensitive to even small

perturbations, exhibited by changes in the atoms’ often exaggerated properties.

In this work I look to illustrate the experimental pieces connecting field and pho-

toionization of Rydberg atoms using microwaves.

I begin this chapter with an overview of some of the basic properties and math-

ematical tools used to treat Rydberg atoms, and look to give an overview of the

current state of microwave ionization of Rydberg atoms. The rest of this disserta-

tion is as follows. In Chapter 2 I give an overview of the experimental setup and

methods used in this dissertation. In Chapter 3 I describe first results of multi-

photon microwave ionization of lithium atoms at 17 GHz. In Chapter 4 I describe

similar experiments using 36 GHz microwave pulses. In Chapter 5 I introduce a

Floquet - Quantum Defect Theory model to describe the experimental results. Fi-

nally, in Chapter 6 I investigate the final state distributions of surviving bound
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atoms after 17 GHz microwave pulses.

The field of Rydberg atoms can be traced back to Johannes Rydberg, who in

1889, after studying a wealth of spectral tables of known atoms, determined that

the atomic spectral transition wavelength, λ, between two states n1 and n2 with

quantum defects δ1 and δ2, respectively, could be expressed as a simple expression,

1
λ

= R∞

(
1

(n1 − δ1)2 −
1

(n2 − δ2)2

)
, (1.1)

where R∞ is what is now referred to as the Rydberg constant,

R∞ = 109737 cm−1, (1.2)

which Rydberg properly computed for hydrogen to within a tenth of a percent of

the currently known value[1].

In 1913 Bohr showed that for hydrogen the Rydberg constant could be ex-

pressed in terms of physical constants,

R =
k2Z2e4me

2h̄2 , (1.3)

where k is the Coulomb force constant, Z is the atomic number, e and me are the

charge and mass of the electron, and h̄ is the reduced Planck constant, or the Dirac

constant. Bohr was therefore able to express the energy levels of the hydrogenic

atoms terms of physical constants,

W =
−k2Z2e4me

2h̄2n2
, (1.4)

most importantly scaling as n−2. Many of the properties of Rydberg atoms scale

proportionally to a power of the principal quantum number, n. Throughout this
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dissertation we will be exploiting many of these physical properties, and some of

the relevant properties are summarized in the table below[2].

Property Scaling

Binding energy n−2

Adjacent n level spacing n−3

Classical Kepler frequency n−3

Orbital radius n2

1.1.1 Atomic Units

As Eq. (1.4) well illustrates, it would be best to introduce atomic units sooner rather

than later. Unless otherwise noted, atomic units will be used throughout this dis-

sertation to simplify equations. To quickly summarize,

Constant Symbol SI AU

Mass me 9.1× 10−31 kg 1

Action h̄ 1.05× 10−34 J·sec 1

Charge e 1.6× 10−19 C 1

Length a0 5.29× 10−11 m 1

Energy W 2× 13.6 eV 1

Frequency ω/2π 6.5761× 106 GHz 1

Electric Field E 5.137× 109 V/cm 1

Equation (1.4) can therefore be more cleanly written as,

W =
−1
2n2 . (1.5)
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1.1.2 Quantum Defect Theory

Non-hydrogenic atoms exhibit shifted energy levels, due to the non-Coulombic

potential of the ionic core. The binding energy of the Rydberg atom can be written

as,

W =
−1

2(n− δ`(n))2 , (1.6)

where δ`(n) is the quantum defect, the phase shift divided by π of the nonhydro-

genic Rydberg wavefunction from the hydrogenic wavefunction. The quantum

defects for an atomic species are heavily ` dependent and weakly n dependent.

These quantum defects are empirically determined and approach zero for high-`

states, since the electron never approaches the ionic core. For 7Li, these quantum

defects are[3, 4],

δs(n) = 0.3995101(10) + 0.0290(5)(n− 0.3995)−2 (1.7a)

δp1/2(n) = 0.0471780(20)− 0.024(1)(n− 0.0471)−2 (1.7b)

δp3/2(n) = 0.0471665(20)− 0.024(1)(n− 0.0471)−2 (1.7c)

δd(n) = 0.002129− 0.01491(n− 0.002129)−2 (1.7d)

δ f (n) = −0.000077 + 0.021856(n + 0.000077)−2, (1.7e)

and are illustrated in Fig. 1.1.

1.2 Ionization Processes in atoms

1.2.1 Field Ionization

At one extreme of this subject is the basic concept of field ionization of atoms. A

rich subject itself , the salient points of field ionization will be discussed below.
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n − 1

n

ns

np nd nf

+ +

Figure 1.1: Lithium energy levels as a function of ` plotted between the hydrogenic
n and n− 1 levels (dashed lines). Example low and high angular momentum clas-
sical orbits are shown at the bottom left and right of the figure, respectively.

Hydrogenic ionization

We can first look at hydrogenic field ionization. Applying an electric field, E, tips

-6

-2

2

-10 -6 -2 2 6 10

z

V

(a)
-6

-2

2

-10 -6 -2 2 6 10

z

V

(b)

Figure 1.2: (a) Coulomb and (b) combined Stark-Coulomb potentials.

the atomic Coulomb potential,

V(z) =
−1
|z| + Ez, (1.8)



1.2 Ionization Processes in atoms 6

where z is the direction of the electric field, as shown by Fig. 1.2. We can find the

field necessary for the electron to go over the Coulomb-Stark barrier by first setting

the derivative of the potential equal to zero,

dV
dz

= 0 = z−2 + E, (1.9)

giving the coordinate of the top of the potential saddle point. Substitution into

Eq. (1.8) leads to the potential energy −2
√

E due to the applied field . Ionization

occurs when the binding energy of the atom, W, is less than the field potential.

Equating them leads to the requisite field required for ionization,

E =
W2

4
(1.10)

which with Eq. (1.5) reduces to 1/16n4, denoted as the classically allowed ioniza-

tion field. The derivation of Eq. (1.10) ignores some important subtleties, namely

the shift in energies from the Stark effect and the centripetal barrier seen by high

m states. In the presence of the electric field, ` is no longer a good quantum num-

ber and is replaced by the non-negative parabolic quantum numbers, n1 and n2,

where,

n = n1 + n2 + |m|+ 1. (1.11)

The electric field also shifts the atomic energy levels, which to first order can be

written as

W =
−1
2n2 −

3
2

E(n1 − n2)n. (1.12)

For the reddest state, or state shifted lowest in energy, n1 − n2 can be substituted

for n[2]. Solving Eq. (1.10) for the new requisite field when m 6= 0 yields E =

1/9n4. The 1/16n4 and 1/9n4 fields are shown on the hydrogen Stark maps for



1.2 Ionization Processes in atoms 7

n = 12 . . . 17 in Figs. 1.3a and 1.3b. Bluer states, or states shifted higher in energy,

ionize in higher fields, usually higher by a factor of two to n, but there is no equally

simple way of estimating a threshold field[5]. Parabolic coordinates may be used to

describe field ionization, where motion is bound in the ξ coordinate, and electrons

ionize at infinity in the η coordinate.

Nonhydrogenic ionization
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(a) Hydrogen, m = 0
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(b) Hydrogen, m = |1|
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(c) Lithium, m = 0
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(d) Lithium, m = |1|

Figure 1.3: Stark maps for H and Li, m = {0, |1|}, for n = 12 . . . 17 as a function
of binding energy. Also plotted are 1/9n4 (dot-dashed line), 1/16n4 (dashed line),
and 1/3n5 Inglis-Teller limit (dotted line).

Nonhydrogenic atoms can ionize in the same fashion as hydrogenic atoms,

maintaining the same approximate value of n1 as the electron overcomes the po-
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tential barrier found by Eq. (1.9) for the red state. Blue states again ionize in a

higher field. Nonhydrogenic ionization adds a second, often more rapid, method

of ionization not occurring in hydrogenic atoms that is similar to autoionization[5].

Nonhydrogenic atom wavefunctions in an electric field are no longer separable in

parabolic coordinates and n1 is no longer a good quantum number. Just as the core

perturbation causes avoided level crossings, as visible in the lithium Stark map for

m = 0 shown in Fig. 1.3c, the core perturbation couples levels of different n1. Red

and blue states overlap slightly at the atomic core and couple together. High n1

states couple to Stark continua states of low n1 and ionize. Littman et al. first illus-

trated this in |m| = 1 states of lithium, ionizing at a field of 1/9n4[6]. For m = 0

ionization in nonhydrogenic atoms occurs at a field according to 1/16n4.

1.2.2 Photoionization

On the other extreme is photoionization, where one or more photons of sum total

energy greater than the electron binding energy W incident on an atom provides

the energy to cause ionization.

First experiments of photoionization were undertaken by Hertz in 1886, con-

cluding that UV light was a requisite component of the photoelectric effect, but

Hertz did not attempt an explanation of his results. In 1905, Einstein successfully

explained the photoelectric effect with the quantization of incident light h f , where

f is the frequency of light, and received the Nobel prize in 1921 for his efforts[7].

The advent of strong laser light sources has opened atomic photoionization into

a broad sub-field of physics. Photoionization processes are primarily divided into

two regimes by the Keldysh tunneling parameter,

γ =

√
Wion

2Φpond
, (1.13)
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where Wion is the binding energy of the atom, and Φpond is the ponderomotive

potential of the applied laser field, given as,

Φpond =
E2

4ω2 , (1.14)

where E is the field amplitude of the incident light of frequency ω. The Keldysh

parameter is essentially the ratio of the laser frequency to the tunneling frequency

through the combined Stark-Coulomb potential barrier[8]. If γ < 1 ionization is

a tunneling process and if γ > 1 then ionization is a multiphoton process, and

this work will primarily concern only the latter. In a perturbation theory regime,

N-photon ionization of ground state atoms is at least an N-th order process[9–12].

Photoionization is often best described not by a requisite field amplitude, but

instead by a rate. In a regime where perturbation theory is valid and depletion of

the initial state is small, the rate of transfer between two atomic states |i〉 and | f 〉

in a field E, where | f 〉 is normalized per unit energy, is given by Fermi’s Golden

Rule[13],

Γ = 2π|〈 f |r · E|i〉|2. (1.15)

Single photon photoionization rates can be calculated using Fermi’s Golden Rule

by inserting a bound atomic state as the initial state and a normalized per unit

energy continuum state for the final state.

Fermi’s Golden Rule has been applied in many more complicated situations,

and with regards to experiments presented in Chapters 3 and 4, most importantly

with above threshold ionization. Above threshold ionization is when an electron

energetically above ionization threshold absorbs one or more additional photons.

Deng and Eberly[14, 15] successfully described multiphoton absorption above thresh-

old ionization using a quantum mechanical model of strong coherent continuum
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- continuum electric dipole coupling above the limit where the coupling over the

ionization limit is a perturbative bound - continuum coupling from the ground

state given by Fermi’s Golden Rule.

Whereas Deng and Eberly’s approach well describes the ground state case, a

proper description of multiphoton ionization by laser fields of Rydberg atoms was

developed by Giusti-Suzor and Zoller[16]. Giusti-Suzor and Zoller formulated it

as a multichannel quantum defect theory - Floquet problem where the couplings

between channels are described by radiative dipole couplings of finite range. Their

approach shows that the strong coherent coupling of states continues smoothly

over the limit to the bound states. A full treatment of a Rydberg atom in a mi-

crowave field using a similar approach will be discussed in Chapter 5.

1.3 Previous Work

Sitting in between field ionization and photoionization is microwave ionization of

excited atoms. What follows is an overview of the body of research to date on

microwave ionization of Rydberg atoms.

1.3.1 Scaled Units

Previous work on microwave ionization, outlined below, has used scaled microwave

units for the classification of systems with great success. The scaled microwave fre-

quency, Ω, is the ratio of the microwave frequency ω to the 1/n3 classical Kepler

frequency of the atom,

Ω = ωn3. (1.16)
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The scaled microwave field amplitude, E0, is the ratio of the microwave field am-

plitude E to the 1/n4 electric field of the Coulomb potential,

E0 = En4. (1.17)

Scaled microwave units have proven to be a useful tool in the classification of sys-

tems, as illustrated by Fig. 1.4. The gray shaded area represents experimentally

explored regions. Scaled microwave units draw a clear separation in the dynamics

of systems where Ω < 1 and Ω > 1, where microwave ionization processes are

fundamentally different for both hydrogenic and non-hydrogenic atoms, as will

be illustrated below. However, scaled units are not a useful method of analyzing

atomic spectra near the photoionization limit, defined as Ω = n/2. For this disser-

tation lab units are preferred over scaled microwave units and will be used unless

otherwise specified.
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Figure 1.4: Classification schematic of the dynamics of microwave ionization as a
function of scaled frequency. The gray shaded areas represents the experimentally
explored regions. Figure updated from Clausen[17].
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1.3.2 Low Scaled Frequency

Hydrogenic atoms

The first experimental work on microwave ionization, published in 1974, was un-

dertaken by Bayfield and Koch[18], who used 30 MHz, 1.5 GHz, and 9.9 GHz fields

to ionize a fast beam of excited hydrogen atoms in states around n = 65. Inter-

estingly, H atoms ionized in the same field amplitude for 30 MHz and 1.5 GHz

fields, the same 1/9n4 field for ionization of the red state in a static field, and a

lower field was required at 9.9 GHz. By 1983, work on microwave ionization il-

lustrated the differences between hydrogenic and non-hydrogenic atoms in fields

where the microwave frequency is below the 1/n3 transition frequency[19]. Fur-

ther work on hydrogen showed that the 1/9n4 field dependence for low frequen-

cies decreased as the scaled frequency approached unity, as shown in Fig. 1.5[20].

Quantum mechanically, this 1/9n4 field dependence can be considered a byprod-

uct of the second-order Stark effect. The oscillating microwave field creates a Stark

state for a given n and m. Due to the second-order Stark effect the slope of the

state, dW/dE, is not constant. When the microwave field reverses the Stark state

created by the field −E does not have the same slope, and the original Stark state

is projected on to a set of Stark states of the same n and m. Ionization occurs when

the field is large enough to ionize the reddest Stark state. Classically, hydrogenic

microwave ionization has been well described as the onset of classical chaos[21].

More recently, Clausen and Blümel have shown a fourth-order perturbation theory

model properly describes the multiphoton resonances experimentally observed in

hydrogen below Ω = 1[23].
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Figure 1.5: Threshold 10% scaled field vs scaled microwave frequency, from van
Leeuwen et al.[20]. A 1D classical surface state electron model and 2D classical
hydrogenic monte carlo model[22] fit experimental results for 0.2 < Ω < 0.6.

Non-hydrogenic atoms

A different picture exists for non-hydrogenic atoms. Pillet et al.[24] showed a 1/3n5

field requirement for low m alkali atoms. Although both forms of microwave ion-

ization are essentially field processes, they occur for fundamentally different rea-

sons. Microwave ionization of nonhydrogenic atoms can be thought of as a ladder

climbing mechanism, as shown in Fig. 1.6. As the field increases to 1/3n5, point

A in Fig. 1.6, atoms make a Landau-Zener transition to the n + 1 state, traversing

the avoided crossing of the n and n + 1 states. Successive microwave cycles drive

further transitions to higher states until the direct field ionization occurs at point

B in Fig. 1.6. This Landau-Zener transition picture fails to account for the coherent

effects of many microwave cycles, which lowers the field required.

A more subtle picture of microwave ionization of nonhydrogenic atoms is needed

to properly explain some experiment results. Pillet et al. have illustrated mi-

crowave ionization results not well explained using a single-cycle Landau-Zener
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Figure 1.6: Energy level diagram illustrating the ladder climbing mechanism of
nonhydrogenic microwave ionization in a microwave field where Ω < 1, from
Pillet et al.[25]. If the microwave field is greater than 1/3n5 an initial n = 20 atom
traverses the avoided crossing at point A to the n = 21 state. Successive microwave
cycles cause a series of Landau-Zener transitions bring the atom to a large enough
n such that direct field ionization can occur, labeled as point B.

picture[26]. Lithium atoms excited to the 36d state ionize in a 15 GHz 340 V/cm

microwave field, corresponding to Emw = 1/9n4. Applying a small 1 V/cm static

field lowers the threshold ionization field to 1/3n5. In zero field, the microwave

field creates a set of sidebands spaced by the microwave frequency ω spanning

±kEmw. For a n → n + 1 transition the n and n + 1 sidebands must overlap, with

the detuning between the sidebands small compared to the coupling matrix ele-

ment. Microwave ionization is suppressed when the coupling matrix elements are

small compared to the microwave frequency and ionization requires a 1/9n4 field
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amplitude. When a small static field,

Es ≥
ω

6n2 , (1.18)

is applied, the sidebands are split by a 3/2nkEs Stark shift, and a quasi-continuum

of states is created where the central sideband of states has spacing of ω/n rather

than ω in zero static field. Microwave ionization occurs at a threshold only slightly

higher than 1/3n5, a result not explained by a single-cycle model. Stoneman et al.

also required a multi-cycle description for microwave transitions from the 19s state

to the n = 17 Stark manifold in potassium[27]. Each cycle of the microwave sam-

ples the avoided crossing, and the transition amplitude of each microwave cycle

coherently add together to form multiphoton resonances. The full multiphoton

picture can be described using a Floquet approach, the mechanics of which will be

discussed in section 5.1.

1.3.3 High Scaled Frequency

In the region 1 < Ω < 2 the classical description slowly breaks down, predict-

ing ionization fields much lower than experimentally measured[17, 28]. Explain-

ing microwave ionization when the microwave frequency is greater than the 1/n3

level spacing has been an area of much theoretical research and is still incompletely

understood. Most theoretical work has been based around a “localization” concept

for ionization, roughly analogous to Anderson localization which describes elec-

tron transport in 1D solid state systems. These localization models have been ap-

plied to both hydrogenic and nonhydrogenic atoms with some success[29]. These

models will be discussed below.
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Jensen et al.

The previous best theoretical description of experimental data came from Jensen et

al., simplifying the localization work of Casati et al.[21, 30]. Given two high-lying

one dimensional states, n and n′, the on resonance Rabi frequency between the two

states can be written as[31],

ωR = µ · E (1.19)

where µ is given by by Delone et al.[31],

µ = 〈n|r|n′〉 =
0.4108

(nn′)3/2ω5/3 , (1.20)

where ω is the applied microwave frequency. We can assume n ≈ n′ and that

n � (n′ − n). Jensen et al. introduce the parameter a, the ratio of the Rabi width,

ωR to the detuning from resonance, ∆. The maximum detuning from resonance is

half the atomic level spacing, giving a as,

a =
ωR

∆
=

0.4108E
n3ω5/3

1
2n3

=
0.4108E
2ω5/3 , (1.21)

which is independent of n. The extremes of a � 1 and a � 1 are known as the

“strong-disorder” and “weak-disorder” regimes of Anderson localization in solid-

state physics[30]. When a < 2, the Rabi width spans at most a single n state and

the microwave field couples a sequence of single states one photon apart, creating

a few strongly coupled levels. When a ≥ 2 the Rabi width is greater than the 1/n3

state spacing and the Rabi width contains more than a single state. The process can

no longer be considered as a coherent sequence of single state transitions. Instead

the coupling of levels extends all the way to the ionization limit, and diffusive
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microwave ionization occurs. This a = 2 condition for microwave ionization can

be succinctly written as,

E = 2.4ω5/3, (1.22)

and is n independent. Equation (1.22) has been previously shown to hold for Sr in

the region where 1 < Ω < 5[28].

Maeda and Gallagher measured the 50% ionization threshold field for stron-

tium in the range of 0.9 < Ω < 5.5[28]. Their results are shown in Fig. 1.7. Stray

fields on the order of ∼60 mV/cm in the experimental interaction region set the

cutoff n at nc = 270, and artificially depressing the cutoff n lowered the requisite

field required for ionization. Also shown in the figure are the theoretical predic-

tions of Jensen et al.[21] (solid curve), and two predictions of Casati et al.[32]; a

classical prediction (thick dashed curve) and a quantum prediction (thin dashed

curve). Although the Casati et al. result best matches the data in the region of

1 < Ω < 3 it exhibits the wrong functional form, and the Jensen et al. result best

indicates a lower bound for ionization.

Schelle et al.

Schelle et al.[29] have expanded the approach of Casati et al. to a more devel-

oped localization model, strongly drawing corollaries to Anderson localization in

condensed matter systems. Anderson localization is the inhibition of quantum

transport due to destructive interference in disordered quantum systems[34]. Ap-

plied to microwave ionization of atoms, the microwave photons define multipho-

ton transitions between the initial and final states, the amplitudes of which must

be coherently summed together and destructive interference causes localization.

Casati et al. posited that ionization occurs when the localization length reaches all

the way to the ionization limit[32, 33]. Schelle et al. again apply the localization
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field of E � 1=16n4, it is consistent with a stray electric

field of �60 mV=cm.

To show explicitly the dependence of the apparent

ionization field on nc we lowered nc by introducing a

small field pulse immediately after the MW pulse and

before the field ionization pulse, as shown by the dotted

line in Fig. 1(b).With this pulse we ionize atoms in states

of n > nc before we apply the field ionization pulse, so

that MW excitation to n > nc appears as ionization. In

Fig. 3 we show the results for nc ’ 145 and ’ 120 ob-

tained with field pulses of �1 and �2 V=cm. Not surpris-

ingly, the apparent ionization fields are qualitatively

similar to those obtained in the previous hydrogen ex-

periments [4].

In Fig. 4 we compare our measured scaled ionization

fields to those predicted by several theoretical approaches

[1,6,14]. The classical prediction for the scaled ionization

field [6],

Fc
0
� 1=�49�1=3�; (1)

shown by the dashed line of Fig. 4, is far below the

experimental data. Before comparing our data to the

quantum models, it is worth noting that both the local-

ization theory of Casati et al. [6] and the refinement due to

Jensen et al. [1,14] are based on a one dimensional atom.

In both theories, the MW field couples a sequence of near

resonant atomic states. How many states are coupled, or

equivalently, how many photons are absorbed, depends

on the strength of the MW field. In the localization

theory, ionization occurs if the photonic localization

length l� equals the number of photons required to reach

the ionization limit, i.e., when l� � 1=2n2�, leading to a

scaled ionization field of [6]

Fl
0
� �7=6�6n��1=2; (2)

which is shown as a dotted line in Fig. 4.While the field of

Eq. (2) is in far better agreement with our data than the

classical field, it is still below the observed fields for

�> 2:5.
Jensen et al. refined the quantum description in the

following way [1,14]. They noted that the dipole matrix

element connecting states of principal quantum numbers

ni and ni�1, which are i and i� 1 photons removed from

the initial n state, is given by [1,14]

xi;i�1 � �0:411�nini�1�
�3=2��5=3: (3)

For ni � ni�1 � 1, xi;i�1 scales as ni�1
�3, just as the

spacing between adjacent n levels. Similarly, the detuning

of � from the ni � ni�1 frequency is given by

�i�1ni�1
�3, where �i�1 is random with a maximum value

of j�i�1j � 1=2. It is the random character of �i�1 which

leads to the similarity to Anderson localization. Jensen

et al. introduced the parameter a, given by

a � xi;i�1F=�1=2ni�1
3�; (4)

the ratio of the on resonance Rabi frequency to the

maximum detuning, and they made the crucial observa-

tion that a characterizes the entire sequence of one photon

transitions from the initial state to the ionization limit

[1,14]. The physical significance of the Rabi frequency is

that it characterizes the frequency of population oscilla-

tion between a pair of coupled states. For a < 2 the Rabi

frequency, or width, is less than the spacing between n
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FIG. 3. Scaled 50% ionization fields for 0:4<�< 2:5. Fields

obtained with a cutoff n, nc � 270, by varying the MW field

amplitude (�) and by scanning the second laser frequency with

different fixed field amplitudes as shown in Fig. 2 (�). The

substantially suppressed 50% ionization fields obtained when

nc is lowered to nc � 145 (4) and nc � 120 (�). Data points

are connected by straight lines to guide the eye. The horizontal

bars at the top of the figure indicate the resolution �� from our

dye laser linewidth.
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Figure 1.7: Scaled 50% ionization threshold fields for 0.9 < Ω < 5.5 from Maeda
and Gallagher[28], shown along with theoretical predictions. The classical predic-
tion of Casati et al.[32] is plotted as the dashed line and clearly fails as the scaled
frequency increases. The quantum mechanical prediction of Casati et al.[33] is the
plotted as the dotted line. The prediction of Jensen et al.[21] is plotted as the solid
line and best matches the experimental measurements.

ionization condition to an extensive augmented Floquet matrix diagonalization of

banded symmetric complex matrices on the order of 106[35–39]. The results of their

calculations are shown in Fig. 1.8 for a 500 ns microwave pulse at ω = 17.5 GHz

using np states up to n = 245. The ionization limit is assumed to be one microwave

photon above n = 230, at nc = 270. For these calculations, photoionization occurs

at scaled frequency Ω = 32.

The results shown in region (I) of Fig. 1.8 agree with the previous theoreti-

cal prediction of Jensen et al.[21, 30] and the experimental results of Maeda and

Gallagher[28]. As we will discuss further in Chapters 3 and 4, our recent experi-

ments match well with the theoretical predictions shown in region (II), but widely

diverge for region (III) of Fig. 1.8, one microwave photon from the ionization limit..
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computational power provided by parallel supercomputing

facilities. The production of one single data point as dis-

played in the figures below requires repeated diagonaliza-

tion of banded complex symmetric matrices of dimension

up to 106, which amounts to storage needs up to 150 GB.

In order to highlight the continuous transition from sup-

pressed transport due to Anderson localization to enhanced

transport due to the photoeffect, we scan an energy range

of atomic initial states from n0 ¼ 90 to n0 ¼ 245, at fixed

microwave frequency and atom-field interaction time t ¼
500 ns, and angular momentum quantum numbers ‘0 ¼ 1,

m0 ¼ 0. The specific choice of these parameters is inspired

by ongoing experiments [13] on Rydberg states of lithium,

and we will provide data for lithium as well as for atomic

hydrogen, to disentangle universal features of the said

transition from those characteristic of the atomic species

under scrutiny. Furthermore, our ‘‘starting value’’ n0 ¼ 90

guarantees that we start out in the Anderson regime, where

the ionization yield is characterized by a universal ioniza-

tion threshold irrespective of the atomic species [20].

Figure 1 shows the results of our calculation in terms of

the scaled ionization threshold field F10�
0 ¼ F10�n40, i.e.,

of the driving field amplitude F10�
0 which induces

PionðtÞ ¼ 0:1, measured in units of the Coulomb field

experienced by the electron on its unperturbed Rydberg

orbit n0 [21]. The threshold field is plotted as a function of
the scaled driving field frequency �0 ¼ �n30, i.e., of the

driving field frequency � measured in units of the unper-

turbed Kepler frequency for n0. Clearly, we can identify

three regimes of qualitatively different behavior: In

regime (I), for low principal quantum numbers n0 ¼
90–170 (corresponding to scaled frequencies �0 ’
1:9–13:1), we witness the characteristic signature of

Anderson localization—the scaled ionization threshold in-

creases with the excitation of the initial atomic state, i.e.,

with decreasing ionization potential, and is essentially

independent of the atomic species [20]. In regime (II),

the ionization threshold still increases on average—sug-

gestive of Anderson localization—but is garnished by

large-scale modulations. Closer inspection of this oscillat-

ing structure reveals its origin in successive passages

through the multiphoton ionization thresholds indicated

by vertical arrows in the figure: The opening of a direct,

N
�
-photon ionization channel [22] is manifest in a local,

rapid decrease of F10�
0 with �0 (since the dominant con-

tribution to the ionization signal is of lower order). As �0

increases further on, the threshold field increases again,

since the cross section for N
�
-photon ionization decreases

with increasing frequency—until the next channel opens.

The thus emerging structures are precursors of the final

opening of the single photon ionization channel at n0 ¼
230 (�0 ¼ 32:4), which defines the demarcation line be-

tween regime (II) and the realm of the photoeffect,

regime (III) [23].

We therefore witness a synchronicity of Anderson local-

ization and (N
�
-order) photoeffect in regime (II): the

former still largely suppresses the ionization process,

even when, by virtue of the value of N
�
, multiphoton

transitions of very low order mediate the transport, while

the latter is already reflected in prominent nonmonotonic-

ities of the threshold field. Only in regime (III) is Anderson

localization completely absent.

A complementary analysis corroborates this interpreta-

tion. According to the theory of Anderson localization, the

exponential localization of the electronic wave function on

a characteristic scale � (in units of the driving field photon

energy ��) on the energy axis [24] implies an exponential

scaling of the ionization yield, according to Pion �
expð�2N

�
=�Þ. Consequently, for a fixed ionization yield

(as implicit in the definition of F10�
0 ), this leads to the

prediction that �ð�0; F
10�
0 Þ=N

�
be independent of �0.

This is what is observed in Fig. 2 in regime (I) (modulo

threshold fluctuations which are characteristic for the

Anderson problem [25]), where we plot �ð�0; F
10�
0 Þ=N

�

vs �0, with � estimated according to [24]

� ’ 3:33F2
0�

�10=3
0 n20: (3)

This simple expression is known to be quantitatively in-

correct [10,16], but to provide a qualitatively reliable
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FIG. 1 (color online). Scaled ionization threshold field F10�
0 ¼

F10�n40 of atomic hydrogen [red dashed line (�)] and lithium

[blue solid line (�)], at fixed laboratory microwave frequency

� ¼ 17:5 GHz and interaction time t ¼ 500 ns. The scaled

frequency�0 ¼ �n30 ¼ 1:9–39:1 is tuned by changing the initial

state’s principal quantum number from n0 ¼ 90 to n0 ¼ 245, at

fixed values of the angular momentum quantum numbers ‘0 ¼ 1

and m0 ¼ 0. We observe three distinct regimes. (I), 1:9 � �0 �
13:1: the monotonous increase of F10�

0 with �0 is a character-

istic signature of Anderson localization in strongly driven quan-

tum systems [20]. Regime (II), 13:1 � �0 < 31:5: F10�
0 still

increases with �0, on average, but is garnished by large modu-

lations due to the passage of the atomic initial state across

subsequent N
�
-photon ionization thresholds indicated by verti-

cal arrows. Anderson localization and finite N
�
-photon ioniza-

tion coexist. Regime (III), �0 � 31:5: The photon energy

exceeds the ionization potential of the initial state, the

Anderson scenario is inapplicable, and single photon absorption

mediates the ionization process.
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Figure 1.8: Scaled 10% ionization threshold field for atomic hydrogen (�) and
lithium (◦) at ω = 17.5 GHz and t=500 ns, from Schelle et al.[29]. The cutoff state is
taken to be nc = 270 and photoionization occurs in region (III).



Chapter 2

Experimental Setup

2.1 Overview

This chapter covers the experimental details required for the experiments in this

dissertation. In particular, the design of the kilohertz repetition rate dye laser

system, microwave components, vacuum hardware, and electronics for exciting

ground state lithium to Rydberg states and observing the results from the applica-

tion of microwave fields.

The general method for the following experiments is composed of four things.

Initial state preparation of ground state lithium to Rydberg np states, microwave

interaction, remaining population state detection, and finally, data collation. An

example timing diagram is shown in Fig. 2.1. This chapter attempts to clarify the

techniques necessary for these four steps.

2.2 Thermal Li Beam

The experiment is based around a thermal beam of ground state lithium atoms.

The beam is created by resistively heating a small oven filled with lithium to a va-
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Figure 2.1: Experimental Timing diagram

por pressure on the order of a torr[40]. The oven is created by drilling a roughly

1 mm diameter hole in the center of a 0.3125” diameter, 0.008” walled, 321 seam-

less stainless steel tube. The ends of the tube are hammered shut. By running

between 40 and 60 A through the tube an effusive Li beam is created which is then

collimated using a series of apertures.

2.3 kHz Laser Setup

2.3.1 Introduction

The workhorse laser system of Rydberg atom physics has long been a system of

Littman-Metcalf pulsed dye lasers pumped by Q-switched, frequency doubled or

tripled Nd:YAG lasers. However, Nd:YAG lasers usually have pulse repetition

frequencies of 10 to 100 Hz with pulse lengths of 5-10 ns, producing dye pulses

of similar length. Recently, kHz repetition rate pump lasers have become commer-

cially available as turn-key solutions for pump lasers systems. These lasers, mostly

Q-switched, frequency doubled or tripled Nd:YLF lasers, have gained popularity

as pumps for Ti:sapphire regenerative amplifiers[41]. The existence of these kHz

Ti:sapphire lasers has fueled interest in the development of kHz repetition rate dye

lasers for preparation of excited atomic and molecular states. Unfortunately, most

doubled Nd:YLF lasers used to pump the regenerative amplifiers produce 527 nm
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pulses 200 ns long, far too long to pump a conventional ns dye laser[42–44]. Most

problematic is the long tail of the pump pulse which contributes to dye heating.

One approach to using such a long pump laser is to use a dye laser cavity more

like that of a continuous wave (cw) laser[45, 46]. Typically the resulting linewidths

are 30 GHz unless an intracavity etalon is used.

Here a different approach is used, slicing the pump pulse into shorter pulses, an

approach which enables us to pump three dye lasers of conventional design[42–44]

for creating lithium np Rydberg states.

2.3.2 Design and Performance

Nd:YLF Pump Laser

The pump laser is a Coherent Evolution-30 diode pumped solid state, frequency

doubled, Q-switched Nd:YLF laser. The Evolution-30 laser produces horizontally

polarized 200 ns FWHM pulses of 527 nm light at a 1 kHz repetition rate and can

deliver up to 20 W of average power. Twelve AlGaAs laser diodes pump the

Nd:YLF rod to produce 1053 nm light. The laser cavity is internally Q-switched

via quartz blocks. Piezo-electric transducers convert rf pulses to ultrasonic waves.

The changing optical index of the quartz, via the photoelastic effect, spoils the Q

of the cavity.

The 1053 nm light is frequency doubled in the laser cavity by a lithium triborate

(LBO) crystal, heated to 318◦ C. The LBO crystal is non-critically phase-matched to

provide efficient doubling without cavity stabilization. A dichroic folding mirror

serves as an output coupler with high transmission at 527 nm and high reflection

at 1057 nm. Waste heat is managed by a 2 kW recirculating chiller with a 23◦ C

setpoint. All together this produces up to 20 W of 527 nm light in 200 ns pulses

at pulse repetition frequency of 1 kHz. The photodiode signal of a single pulse is
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shown in Fig. 2.5.
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PBS1PC1Pump BS1
1
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BS2
2

Amp

DL3

Figure 2.2: Laser system schematic. Shown are the pump laser, Pockels cells (PC),
polarizing beam splitting cubes (PBS), beam splitting cubes (BS), dye lasers (DL1-
3), single-pass dye amplifier (A1) and beam dump.

Pulse splitting

As mentioned earlier, the essential idea is to split each pulse into shorter pulses.

Accordingly, each pulse from the Evolution-30 pump laser is split into three tem-

porally distinct pulses using a system of two DKDP Pockels cells, schematically

shown in Fig. 2.2.

The phase retardation of a noncentrosymmetric crystal is linear with respect to

an applied electric field, known as the Pockels effect. By placing a noncentrosym-

metric crystal between two electrodes, this can be exploited to make a voltage

controlled waveplate, known as a Pockels cell[47]. The phase retardation of the
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Figure 2.3: The a) orientation of DKDP crystal in relation to the electric field, and
b) modified index ellipsoid, from [47].

Pockels cell can be written as,

∆ϕ =
2πn3

or63V
λ0

, (2.1)

where r63 is the electro-optic constant (23.3× 10−12 m/V for DKDP), no the ordi-

nary index of refraction (no = 1.52 for DKDP), V the applied voltage, and λ0 is

the wavelength of light[48]. For 527 nm light the half-wave voltage, Vλ/2, when

∆ϕ = π, is roughly 4 kV. The optical axis is along the direction of the applied

voltage, and the new principle axes of the Pockels cell are rotated 45◦ about the

optical axis. The indices of refraction modified by the field are graphically shown

in Fig. 2.3.

Proper alignment of the Pockels cells are critical for rotating the laser polariza-

tion. The alignment procedure is summarized below. The initial pump laser pulse

is horizontally polarized. The first Pockels cell is grossly set in the beam path
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in a mount capable of adjusting pitch, yaw, and roll. The Pockels cell electrodes

should be approximately 45◦ from horizontal. The pump laser should be set to a

power just above visible lasing, such that the laser intensity is still comfortable to

look at when reflected by an index card. The laser beam should be centered about

the Pockels cell entrance and exit apertures. Pieces of frosted tape or glass slides

are helpful in determining this, although take care to place tape only covering the

aperture and not to touch the optical faces of the cell. Fix an index card in the

beam path at a distance of at least 30 cm past the Pockels cell. Using a pen or small

marker, mark the beam spot on the index card. Next, place a piece of frosted tape

over the entrance aperture of the cell and diffuse light should now be incident on

the index card. Place a sheet of polarizer behind the exit aperture. The polarizer

should be aligned to transmit vertically polarized light. An isogyre cross pattern,

illustrated in Fig. 2.4, should be visible on the index card. The original beam spot

position on the index card will most likely not be centered in the cross pattern. Ad-

just the pitch and yaw of the cell to center the beam spot in the cross pattern, and

adjust the roll of the cell to maximize the contrast of the isogyre pattern. Recheck

the beam alignment through the center of the cell and repeat the above process.

Finally, remove the tape, polarizer, and index card and send the beam through the

polarizing beam splitting cube. Block both outputs from the polarizing beam split-

ting cube using a beam dump and increase the pump power to normal operating

voltage. Place a photodiode near each beam dump to monitor the light reflected

from beam dump. Adjust the Pockels cell driving voltage to maximize switching

contrast by monitoring the photodiode signals. Alignment of the second Pockels

cell is a similar process, although the input light is vertically polarized. Therefore,

the Pockels cell is mounted 90◦ from the first cell.

The Pockels cells are switched from zero retardation to λ/2 retardation in 2 ns,
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Figure 2.4: Isogyre pattern from properly centered Pockels cell. The shaded rings
and lines are dark regions where light is not projected on the index card, and the
central black dot is the marked initial laser spot.

a time that is short compared to the laser pulse length. The half-wave voltage

Vλ/2 = 3.9 kV is generated by a avalanche transistor based Marx-bank circuit us-

ing Motorola 2N5551 transistors[49]. A discussion of the Pockel’s cell electronics

can be found in 2.6.1. The two Pockels cells are switched at 48 and 81 ns after the

beginning of the laser pulse at t = 0. Light exiting the first Pockels cell (PC1) is sent

to a polarizing beam splitting cube (PBS1). Horizontally polarized light passes

straight through PBS1 becoming what we term the first pulse, whereas the rotated,

vertically polarized light is sent through the second Pockels cell (PC2). Light ex-

iting the second Pockels cell is sent to the second polarizing beam splitting cube

(PBS2). Vertically polarized light is reflected to produce the second pulse and hor-

izontally polarized light retarded by PC2, the long tail, passes straight through as

the third pulse. The timing of the light pulses is shown in Fig. 2.6. Figure 2.5 shows

the pulse as it comes from the pump laser, and Fig. 2.6 shows how it is split into

three pieces. The first, second, and third pulses have widths of 16 ns, 35 ns, and

45 ns, respectively. Note, however, that the Pockels cell timing may be tailored to

fit the needs of the experiment. The pulse energies of the three pulses are 4.25, 3.75,

and 3.5 mJ, respectively.

The first pulse, further split by a 50-50 beam splitter (BS1), pumps two single

grating Littman-type dye lasers[43], DL1 and DL2 of Fig. 2.2. Both dye lasers were

constructed using 1200 lines/mm diffraction gratings at grazing incidence with the
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Figure 2.5: Coherent Evolution-30 Nd:YLF laser pulse shape before Pockels cell
system
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Figure 2.6: Coherent Evolution-30 Nd:YLF laser pulse shape after Pockels cell sys-
tem.

output taken from the zeroth order reflection. DL1 uses DCM in dimethyl sulfox-

ide (DMSO) at a molar concentration of 1× 10−3. DL2 uses LDS-821 dissolved in

methanol at a molar concentration of 1.5× 10−4. The second pulse, also split by a

50-50 beam splitter (BS2), pumps a double grating Littman-type dye laser[50], DL3

of Fig. 2.2, and a single-pass amplifier (A1). DL3 was constructed using two 1800

lines/mm diffraction gratings. Rhodamine-640 in molar concentrations 5× 10−4

(oscillator) and 1 × 10−4 (amplifier) was used to characterize the dye laser. The

third pulse, with an average power of 3.5 W, is sent to a beam dump but could eas-

ily be used to pump additional dye lasers or amplifiers. When pumped with 16 ns

2.2 mJ pump pulses, DL1 produces 12 ns laser pulses over a tuning range from

625 nm to 695 nm, centered around 660 nm. The measured temporal pulse shape is
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Figure 2.7: Dye Laser characteristics. Dye laser pulse shapes for DL1-3. DL1 and
DL2 were both pumped by a 16 ns 2.2 mJ pump pulse, DL3 was pumped by a 35
ns 2.1 mJ pump pulse. These pump pulses are shown in Fig. 2.6.
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Figure 2.8: Etalon (20 GHz FSR) fringe pattern for DL1 tuned to 671 nm, averaged
over 33 laser shots.

shown in Fig. 2.7, and the measured tuning curve is shown in Fig. 2.9. Typically,

this laser produces 21.4 µJ per pulse at 671 nm with a linewidth less than 10 GHz

(0.33 cm−1.) An example 20 GHz FSR etalon fringe pattern at a laser output of

671 nm, averaged over 33 laser shots, is shown in Fig. 2.8.

When tuned to 813 nm, DL2 produces 14.4 µJ per pulse delivered in 12 ns. The

pulseshape is shown in Fig. 2.7. The tuning range of this laser is 800 nm to 840 nm

with a linewidth less than 10 GHz (0.33 cm−1.)

The third dye laser oscillator produces 3.72 µJ per pulse at 615 nm before the

amplifier stage when pumped with 35 ns 2.1 mJ pulses, and 36 µJ per pulse after the

amplifier stage. The post-amplifier pulse shape is shown in Fig. 2.7. The linewidth
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of this laser was measured to be as good as 3 GHz, and is typically 4.5 GHz. The

laser frequency is computer controlled using a small stepper motor system to ad-

just the end diffraction grating angle. We measure the relative frequency of the

third laser by monitoring its transmission through a 20 GHz free spectral range

etalon, and the absolute calibration is provided by the 16274.0212 cm−1 2p5(2p3/2)3s−

2p5(2p3/2)3p Ne line observed as an optogalvanic signal. The uncertainty in the

laser frequency calibration is 3.6 GHz.
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Figure 2.9: Dye Laser characteristics. Tuning curve for DL1 characterized with
DCM in DMSO at a molar concentration of 1× 10−3.

The thermal beam of ground state lithium atoms can therefore be laser excited

to np Rydberg states by the scheme: 2s→ 2p→ 3s→ np.
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Figure 2.10: Microwave system schematic diagram. Items in parentheses are op-
tional.

2.4 Microwave components

2.4.1 Overview

Conducting experiments on the microwave ionization of excited atoms requires

complete control of the production of microwave pulses with well-defined fre-

quency, amplitude, duration, and polarization. The general scheme for the pro-

duction of microwave pulses is shown in Fig. 2.10.

The microwave source is either an HP 83620A 0.01-20ĠHz 8360 Series Synthe-

sized Sweeper or an HP 8350B Sweep Oscillator with 83550A 8-20 GHz plug-in. In

the case of the sweep oscillator, microwave pulses are made from the continuous

wave (CW) output using a Hewlett Packard 11720A pulse modulator, connected

using SMA cables. The pulse modulator has a contrast ratio of 60 dB with a rise

time of 10 ns. All microwave components below 26 GHz are connected using SMA

cables. The sweep oscillator exhibits small thermal frequency drifts, and use of

the synthesized sweeper is preferable when using a Fabry-Perot cavity. The syn-

thesized sweeper also has a modulated output option to create microwave pulses

with a contrast ratio of 80 dB and a rise time below 50 ns.

For experiments above 26 GHz, an active microwave frequency doubler is then

used to generate microwaves between 26 and 40 GHz. Whether frequency doubled
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Figure 2.11: Experimental apparatus. The Li beam (yellow), field plates, horn and
MCP detector are shown.

or not, a microwave amplifier is next used. Below 18 GHz, either a Miteq MPN4-

02001800-23P 250 mW solid-state amplifier or a Hughes 8020H traveling wave tube

amplifier is used. The former amplifier is preferable when using a microwave horn

and high powers are not required, the latter when using a Fabry-Perot cavity re-

moves concerns about microwave amplifier noise. There were a variety of reasons

for choosing a microwave horn for the experiment over a waveguide or cavity

setup. The horn allows for short microwave turn on and off times while avoiding

egregious stray field problems, unlike the cavity or waveguide setups, respectively.

However, the horn microwave field amplitude that the lithium atom beam is ex-

posed to is not as easily known as when using a waveguide or cavity. The horn can

be calibrated by comparing experimental data to similar results using a cavity or

waveguide setup. However, conducting these experiments in a piece of WR-62 or

smaller waveguide is not feasible due to the small distance between the interaction

region and the waveguide walls.
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Figure 2.12: Experimental apparatus. The Li beam (yellow), dye laser pulses (red,
orange, red), field plates, Fabry-Perot cavity, and MCP detector are shown. The
four field plates and two brass cavity plates are all electrically isolated from one
another.

The microwave amplifier output is connected to either a set of HP 8495B (70 dB)

and 8495B (11 dB) step attenuators or a HP R382A (50 dB) variable attenuator to se-

lect a microwave power while keeping the microwave signal to noise power ratio

constant. Finally, a 10 dB directional coupler is used to measure the reflected power

when the Fabry-Perot cavity is used for power calibration. For microwave frequen-

cies below 26 GHz, a SMA vacuum feed-through brings microwave power into

the vacuum chamber to either a three-inch microwave horn or Fabry-Perot cavity.

Above 26 GHz WR-28 waveguide is used to connect microwave components, with

a small mica disk separating vacuum and atmosphere in the waveguide.The exper-

imental apparatus with a horn is shown in Fig. 2.11. The experimental apparatus

with a Fabry-Perot cavity is shown in Fig. 2.12.
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2.4.2 Microwave Calibration

One of the key reasons for employing a Fabry-Perot cavity is that it makes cal-

culating the field amplitude at the center of the cavity relatively straightforward.

Our goal for this subsection is to calculate the electric field amplitude at the central

antinode, E, based on measurable quantities. A more extensive discussion can be

found in Ramo and Whinnery[51].

Experimentally, the power loss per cycle in the cavity is small and gaussian

optics are applicable to describe the electric field in the cavity. The electric field in

the cavity can be written as,

E(r, z) = Eψ(r, z)cos(kz− φ(z))cos(ωt), (2.2)

where ψ(r, z) is the profile amplitude, k is the wavenumber, φ(z) is the phase, and

ω is the cavity angular frequency. The profile amplitude, ψ(r, z) is written as,

ψ(r, z) =
W0

W(z)
e
− r2

W(z)2−
ikr2

2R(z) , (2.3)

where W(z) is the beam waist, W0 is the center beam waist, and R(z) is the radius

of curvature of the wavefronts. These are defined as,

W2
0 =

λ

2π

√
2Bd− d2, (2.4)

W(z) = W0

√
1 + (

λz
πW2

0
)2, (2.5)

R(z) = z(1 + (
πW2

0
λz

)2), (2.6)

respectively, where B is the mirror radius of curvature, d the distance between

mirror centers, and λ the microwave wavelength[47]. The phase, φ(z), is defined
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as,

φ(z) = arctan(
λz

πW2
0
) (2.7)

Since the energy in the cavity oscillates between the electric and magnetic fields,

we can simply find the total energy stored, U, when the electric field is a maximum

and the magnetic field is zero.

U =
ε0

2

∫
E(r, z)2dV (2.8)

We can rewrite the stored energy in terms of the microwave angular frequency, ω,

the power lost in the cavity, PL, and the cavity Q, where Q is the fractional power

loss per cycle.

U =
PLQ

ω
(2.9)

The cavity Q is measured by the frequency width where the amplitude response is

1/
√

2 of the resonance value at a given frequency, f , known as half-power points.

∆ f
f
≈ 1

Q
(2.10)

For our 17 GHz cavity, the cavity Q is ≈ 2900.

We can redefine the energy stored in the cavity, Eq. (2.8), in terms of the field

amplitude at an antinode, E, and the effective volume of the cavity, Ve f f . Ve f f is

defined as

Ve f f =
4

E2

∫
V

d3rE(r)2, (2.11)

making the energy stored in the cavity,

U =
ε0

2
E2 Ve f f

4
. (2.12)
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Equating Eqs. (2.9) and (2.12) and solving for the field amplitude yields,

E =

√
8PLQ

ε0ωVe f f
. (2.13)

To calculate the microwave field amplitude, E, it is now only necessary to mea-

sure the power loss and Q of a cavity at a given frequency, and the geometric

dimensions of the cavity to calculate the effective volume.

Substitution of Eq. (2.2) into Eq. (2.11) is explicitly written as,

Ve f f = 16π
∫ ∞

0
rdr

∫ d/2

0
dz|ψ|2cos2(kz− φ). (2.14)

Further substitution of Eqs. (2.3), (2.4), (2.5), (2.6) and (2.7) into Eq. (2.14) allows for

calculating the effective volume in terms of the cavity geometry and a microwave

wavelength. For our cavity the effective volume is 91 cm3 at f = 17 GHz.

Returning to Eq. (2.13), in order to calculate the microwave field strength the

power loss, PL, must be measured. This is simply done with a microwave circulator

or directional coupler and a power meter. A circulator has three ports, numbered

one through three, and a signal input on port one is sent to port two. Microwave

signals sent to port two are sent to port three, and signals to port three are sent to

port one. Terminating port three with a 50 Ω terminator would create a microwave

isolator. For frequencies below 18 GHz, port one of a Trak 10B2201 microwave cir-

culator is connected to the microwave amplifier output, and port two is connected

to the SMA coupler on the cavity mirror. A microwave power meter is connected

to port three. All microwave power measurements have been taken with an HP

432A Power Meter with 8478B thermistor mount, a thermal power meter capable

of measuring CW microwaves between 0.001 and 10 mW (40 dB) over a frequency

range from 10 MHz to 18 GHz. The power meter has a measurement accuracy of
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1%. The power lost is the difference in reflected CW power measured on port three

of the circulator between resonance and non-resonance in the cavity.

The microwave cavity is stable over the course of a day, and the cavity Q, center

frequency, and power coupling are checked daily.

2.5 Vacuum System

Sadly, these experiments cannot be conducted at atmospheric pressure. The impe-

tus for conducting experiments in a vacuum is clear after a simple back of the enve-

lope calculation of the mean free path of molecules. From the Maxwell-Boltzmann

velocity distribution,

v̄ =

√
8kT
πm

(2.15)

For an atmospheric N2 molecule, v̄ = 476 m/s. The average number of collision per

second, Z, can be computed as,

Z =
√

2nπξ2v̄, (2.16)

where n is the number density and ξ is the molecular diameter[52]. For N2, ξ is

roughly 3× 10−8 cm and n is 2.7× 1019 cm−3 at atmospheric pressure. Therefore

the mean free path is simply,

λ =
v̄
Z

=
1√

2nπξ2
. (2.17)

This works out to be 92 nm for atmospheric N2. For Rydberg atoms the colli-

sion cross-section can be quite large for even a dilute sample of highly excited

atoms, scaling as n4, and interaction with a background gas can cause initial state

depopulation[5]. Since the mean free path is inversely proportional to number
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density, we can call on the ideal gas law to conclude that mean free path is also

inversely proportional to pressure. We can increase the mean free path beyond the

1 m distance scale of our vacuum chamber by simply decreasing the background

pressure of our chamber below 10−6 torr.

The vacuum technology used in these experiments is a standard two-stage

setup comprised of a mechanical belt-driven roughing pump and high-vacuum

diffusion pump. Mechanical pumps are capable of bringing a vacuum chamber

from atmospheric pressure down to close to 10−3 torr.

Diffusion pumps provide the second stage of pumping, covering the range of

10−3 to 10−8 torr, with background pressures in the 10−7 more typically seen on

large chambers with many flanges. Diffusion pumps are experimentally ideal in

that they have no moving mechanical parts to break and are generally not a source

of electric noise. An electrically heated boiler sits at the bottom of the pump and

vaporizes oil, which is conducted up through a central tower to a jet nozzle. The

nozzle sends the oil vapor downwards and outwards towards the water cooled

walls of the pump. The vapor condenses on the pump walls and runs down to the

boiler for recirculation. System gases are trapped by momentum transfer in the

vapor stream, pushed to the bottom of the pump, and eventually removed by the

backing pump[53].

The diffusion pump is a three stage, water cooled, Edwards Diffstak 160/700M,

with a nitrogen pumping speed of 700 liter/s[54]. The diffusion pump takes a

standard fluid charge of 250 ml of Santovac 5. The diffusion pump is backed by a

Welch 1376 Duo-Seal mechanical pump, connected by an Edwards BRV25 Backing

Roughing Valve.

A background pressure of 1 × 10−6 torr can be easily reached within a few

hours of pumping, and 7× 10−7 after a day of pumping. Our typical operating
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background pressure of 2× 10−7 can be reached by employing a small liquid ni-

trogen cold trap inside the chamber. A copper cylinder sits inside the vacuum

chamber with a tube allowing liquid nitrogen at atmospheric pressure to be poured

inside the cylinder.

Pressure measurement is done via both a thermocouple gauge and a Bayard-

Alpert type ionization gauge. The thermocouple gauge, which measures the ther-

mal conductivity of a gas, covers a pressure range from 10−3 torr to almost atmo-

spheric pressure. For pressures below 10−3 torr, a Bayard-Alpert type ionization

gauge is used for pressure measurement. Gas molecules inside the gauge are ion-

ized by electron impact from a hot filament grid and the resultant positive ions

are collected by a negative biased electrode. The electrode current is inversely

proportional to the pressure in the gauge, and can measure pressure in the range

of 10−9 to 10−3 torr. The ionization gauge also creates a small pressure gradient;

ions accelerated to the collector are often embedded and effectively removed from

the system. The ion gauge itself pumps on the system, with a typical pumping

speed of 200 mL/s[53]. Typically Schott glass iridium or tungsten filament gauges

are used. Iridium B-A ion gauges can be briefly operated at air without failure,

whereas tungsten filament gauges are more robust to diffusion pump oil back-

streaming and usually have an accessible second filament by reversing the cable

connector connecting the ion gauge to the ion gauge controller[55].

2.6 Electronics and Data Acquisition

The master clock for the experiment is the Evolution laser Q-switch sync output,

which occurs exactly 2.515 µs before the last dye laser pulse reaches the interaction

region at a repetition rate of 1 kHz.

All of the experimental timing is controlled by two SRS DG535 Four Channel
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Digital Delay/Pulse Generators. The first delay generator is triggered by laser Q-

switch sync out, the other delay generator is triggered by the first. The first DG535

controls the timing of the two laser Pockels cells and the field ionization pulse

trigger. The second DG535 controls the timing of the pulse via the CD output,

where the D channel delay can be altered by the computer over GPIB. Optionally,

the second DG535 can be triggered not by the first delay generator, but instead by

the output of a simple divide-by-two IC. This allows for the microwave pulse to

occur every other laser shot, at 500 Hz, allowing for normalization data.

2.6.1 Pockels Cells Electronics

The essential idea behind a Marx-bank is to charge a number of capacitors in par-

allel, then discharge them in series. The circuit used is shown in Fig. 2.13. The

switches require a +1 kV DC input and a TTL trigger pulse from a SRS-DG535 De-

lay/Pulse Generator. Stable output of the -4 kV output pulse is sensitive to the am-

plitude of the input DC voltage and of the trigger pulse. Increased switching sta-

bility is clearly seen when the trigger voltage is increased. Best results come from

using the DG535 back-panel output at 30 V. The switches usually require between

700 V and 1.5 kV for stable operation, with an increase in input voltage increasing

the output amplitude and giving a faster risetime. Interestingly, these transistor

based Marx bank switches themselves are an active area of research[56]. Proper

construction and operation of these switches requires transistors with a gaussian

doping profile, such as the Motorola 2N5551 transistors[57]. Most non-Motorola

2N5551 transistors are uniformly doped rather than gaussian doped, like the Mo-

torola 2N5551. Uniformly doped 2N5551 transistors consistently fail after only a

few thousand cycles. When properly constructed with gaussian doped transistors,

these switches last for greater than 109 operating cycles without fail. Unlike com-
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mercial solutions, costing in excess of $5000, these switches cost only a few dollars

each and can be made in a few hours.

R1 R2 R2 R2 R2 R2

Out

+V DC

C2

Trig

R2 R2 R2 R2 R2C1 C1 C1 C1 C1

Figure 2.13: Marx bank circuit for generating Pockel’s cell voltage. The circuit uses
fifteen Motorola 2N5551 NPN transistors. C1 = 1 nF, C2 = 20 pF, R1 = 50 Ω, and
R2 = 680 kΩ. The input voltage, +VDC, can be adjusted between 700 V and 1.5 kV.

2.6.2 Field Ionization Pulsers

For the experiments in this dissertation, excited atoms that survive microwave in-

teraction are detected by means of field ionization. The combined Coulomb-Stark

potential can simply be written as

V = − 1
|z| + Ez, (2.18)
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R2

Trig
R1

R3

C1

Figure 2.14: Fast rising field ionization pulse circuit diagram. For the constructed
circuit R1 = 2.8 kΩ, R2 = 10 kΩ, R3 = 50 Ω, and C1 = 1 nF.

along the z axis. The dV/dz = 0 saddle point is at z = −E−1/2. If the electron is

bound by an energy W, the field required for ionization is

E =
W2

4
. (2.19)

Equation (2.19) sets the condition for field ionization to occur, and the rest of this

section will deal with the experimental creation of these fields. An electric field

pulse creates easily detectable charged particles and accelerates them towards a

charged particle detector. Two differing field ionization schemes are used. A fast

rising pulse is used for high efficiency detection where a signal proportional to the

number of surviving atoms is recorded. A slow rising pulse exploits the ioniza-

tion field n−4 dependence to temporally separate final states and is used when the

distribution of final states is recorded.

Fast Rising Pulse

The fast rising field ionization pulse is created using a single avalanche transistor[58].

A Zetex ZTX415 avalanche transistor allows for up to 260 V pulses in 3.5 ns. A

schematic diagram is shown in Fig. 2.14. Although the circuit operates without

fail over more than 109 cycles, it is rather sensitive to input DC voltage. The spe-

cific circuit used for these experiments required +289 VDC source, with a tolerance

of less than ±0.7%.
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Slow Rising Pulse

The slow rising field ionization pulse is based on a ILC T-105 trigger transformer.

The pulser allows for voltages of up to 800 V with a rise time of 2 µs.

2.6.3 Microchannel Plate Dectector

Charged particle detection occurs via a dual microchannel plate (MCP) assembly.

A microchannel plate consists of a thin glass disk of densely packed channels with

a large potential difference between the front and back faces of the plate, typi-

cally 700-1200 V. For these experiments electrons were typically detected, although

positive ion detection is possible by simply reversing the polarity of the applied

potential. An electron entering a channel hits a channel wall and creates a rapid

cascade of electrons which is collected by an anode[59]. Below saturation this sys-

tem creates a linear current proportional to the number of electrons incident on the

detector face. The gain of a MCP plate is typically 104. A second microchannel

plate is used to increase the gain of the detector. The two plate detector setup is

usually operated with a 1900 V potential across the two MCP plates.

2.6.4 Data Acquisition

The signal from the MCP is amplified using either an HP 8447F 0.1-1300 MHz 22 dB

gain amplifier, or an HP 416A 40 dB gain amplifier. The signal is sent through an

SRS 250 Gated Integrator & Boxcar Averager, and passed through to a Tektronix

TDS 3052 500 MHz 5 GS/s oscilloscope. The SRS 250 and TDS 3052 are both trig-

gered by the laser Q-switch sync TTL pulse. The last sample output of the SRS

250 is connected to the data acquisition board of the computer, and computer

voltage sampling is triggered by the “busy” output of the SRS 250. I have writ-
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ten data collection software using the National Instruments LabView framework

which records the MCP, etalon, optogalvanic, and microwave trigger signals while

controlling the excitation laser frequency via a stepper motor. When final-state dis-

tribution data is needed the 256 or 512-shot averaged oscilloscope trace is recorded

by the computer via the GPIB protocol. Completing a transfer of the oscilloscope

trace from the scope to the computer effectively takes on the order of half a sec-

ond, during which the oscilloscope does not record data. Averaging many laser

shots on the oscilloscope before transferring data to the computer keeps the effec-

tive data acquisition rate closer to the 1 kHz laser pulse repetition frequency than

a few Hz maximum GPIB transfer rate.



Chapter 3

Multiphoton Microwave Ionization at

17 GHz

In this chapter I discuss first experiments of multiphoton ionization approaching

the photoionization limit using 17 GHz microwave pulses. Previous published ex-

perimental investigations of microwave ionization have spanned a range of scaled

frequency from 0.01 < Ω < 6[24, 28, 60]. In the following chapter I will examine a

range of scaled microwave frequency from scaled frequency Ω ≈ 2 to beyond the

Ω = n/2 photoionization limit.

3.1 Initial Hypothesis

As previously discussed, perturbative N-photon ionization of ground state atoms

is an N-th order process[9–12, 61]. Consequently, we initially expected N-photon

ionization to scale as IN, where I is the microwave intensity. Two-photon ion-

ization is more difficult than single photon ionization. Three-photon ionization is

more difficult than two-photon ionization. This would yield atomic spectra similar

to the calculated spectra cartoon shown in Fig. 3.1.
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Figure 3.1: Calculated microwave ionization spectra expected for ionization as an
IN process, as a function of binding energy.

3.2 Experimental Results

The experiment setup used for this investigation is described in Chapter 2, and

specific details will be illustrated below. The relevant timing diagram is shown

in Fig. 2.1. Typically a microwave pulse from 20 ns to 2 µs long is injected into

the cavity 100 ns after the laser excitation. One microsecond after the laser pulse

we apply a negative voltage pulse to a plate below the cavity to field ionize the

atoms not ionized by the microwaves and eject the electrons through a hole in

the plate above the cavity. The electrons are detected with a microchannel plate

detector, and we record the signal with a gated integrator. Electrons produced by

photoionization or microwave ionization leave the interaction region before the

voltage pulse and are not detected.

The microwave cavity consists of two brass mirrors of 102 mm radius of curva-

ture separated by 79.1 mm on the horizontal cavity axis. We operate the cavity on
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the TE06 mode at 17.068 GHz with quality factor Q = 2900. With this Q the decay

or filling time of the energy in the cavity, τ = 27 ns, sets a lower limit on the pulse

length we can use. The maximum field amplitude we can produce in the cavity is

200 V/cm, and we are able to determine the microwave field with an uncertainty

of 8%.

3.2.1 Microwave power

The recorded spectra for 200 ns microwave pulses at various field amplitudes is

shown in Fig. 3.2. Data points are averaged over 200 laser shots and the microwave

pulse is applied on alternating shots for data normalization. In comparison to

Fig. 3.1, there are clear differences.
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Figure 3.2: Bound state electron signal as a function of binding energy in GHz, for
microwave fields from 0 V/cm to 81 V/cm.



3.2 Experimental Results 49

We can find the microwave field required for 10% and 50% ionization to com-

pare to theoretical predictions by interpolating between the spectra at a given bind-

ing energy, shown in Fig. 3.3. The 50% ionization field is between 5 V/cm and

15 V/cm over the entire range from a binding energy of 400 GHz to the ionization

limit.
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Figure 3.3: Threshold microwave field required for 10% and 50% ionization as a
function of binding energy, compared to theoretical prediction of Jensen et al.

Microwave ionization in this regime clearly does not scale as IN, and a compar-

ison between ground state ionization and our excited atom microwave ionization

results is shown in Fig. 3.4. Ground state ionization experiments by l’Huiller et

al.[61], who focused 50 ps laser pulses of up 0.2 J on ground state Xe and Xe+ atoms,

are shown in Fig. 3.4a.The microwave ionization data are plotted in Fig. 3.4b.

Both figures are plotted on a vertical scale that spans eight orders of magnitude,
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yet the results shown in Fig. 3.4b spans less than an order of magnitude over 24

microwave photons.
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Figure 3.4: Experimental comparison of ground-state multiphoton ionization and
Rydberg multiphoton microwave ionization. Figure(a) Results of l’Huillier et
al.[61] for multiphoton ionization of ground state Xe and Xe+ atoms, and (b) results
of Fig. 3.3 plotted as ionization threshold intensity as a function of the number of
microwave photons to the ionization limit.

3.2.2 Bias Voltage

As previously seen at lower values of scaled frequency, an important aspect of

these measurements is the control of stray fields[26, 28]. In addition to the plates

above and below the cavity there are plates on either side of the cavity, as shown in

Fig. 2.12. Applying bias voltages to these four plates and the cavity mirrors enables

us to reduce the stray field at the center of the cavity to below 5 mV/cm. The

minimum stray field is determined by minimizing the microwave ionization with

the laser tuned slightly below the ionization limit. A stray field in the direction
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of the microwave field is much more effective in lowering the microwave field

required for ionization than a perpendicular field, presumably because it leads

to a non-zero average field in the direction of the stronger oscillating microwave

field[62].
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Figure 3.5: Microwave ionization population fraction as a function of external bias
field, for binding energy 3 microwave photons from the ionization limit. This
corresponds to n ∼ 253. The plotted curve is a fitted gaussian with FWHM of
10.8l2 mV/cm.

Rather than scan the laser excitation frequency for a fixed field, we can set the

laser frequency and scan the voltage on a field plate to measure the fractional ion-

ization as a function of bias field. An example is shown in Fig. 3.5 at a binding

energy of 54 GHz. That ionization is easier in an applied field leads to an easy

technique to nullify any stray field in the interaction region. Simply applying a

microwave pulse to ionize some, but not all, excited atoms while adjusting the ap-

plied voltage on a field plate to minimize the microwave ionization signal quickly

cancels any stray field in the experimental region. Iterating this process over the

six field plates in the chamber reduces the stray field, as seen by the 1/9n4 depres-

sion in the ionization limit, to within 5 mV/cm. Unlike other methods that require
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laser linewidths on the order of MHz or better[63, 64], this technique places no

strong requirements on the laser linewidth, microwave frequency or field ampli-

tude. The sensitivity to external fields places no strong limitations on the binding

energy of the excited atoms, as shown by Fig. 3.6 for a set of bias fields applied to

the top plate from 0 to 10 mV/cm, plotted as a function of the binding energy of

the excited atoms. The fraction of atoms microwave ionized is always smallest in

zero bias field for the entire range of binding energies shown, from -160 GHz to the

ionization limit.
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Figure 3.6: Fraction of atoms microwave ionized by a 200 ns 3.9 V/cm 17 GHz mi-
crowave pulse as a function of binding energy, for bias fields from 0 to 10 mV/cm
in the vertical direction.
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Figure 3.7: Fraction of atoms remaining one 17.045 GHz microwave photon from
the ionization limit as a function of microwave pulsewidth. The ionization
pulse occurs 2500 ns after laser excitation. Data shown are for 0.13 V/cm (M),
0.25 V/cm (•), 0.47 V/cm (◦), 0.83 V/cm (�), 1.48 V/cm (�), 2.64 V/cm (∗),
8.34 V/cm (×), and 26.37 V/cm (+).

3.2.3 Single Photon Ionization Rates

The single photon ionization rates can be measured with a few small changes to

the experimental setup. The field ionization pulse is adjusted to occur 3 µs after

laser excitation, and the np laser excitation frequency is fixed to excite atoms one

microwave photon from the ionization limit, in n states centered at n = 430. The

microwave pulse length is controlled by the pulse/delay generator and iterated by

the computer using GPIB from 0 µs to 2µs in 25 ns steps . This allows us to mea-

sure a decay curve for a given microwave field amplitude, and results are shown in

Fig. 3.7. For E > 3 V/cm there is an evident multi-exponential decay at the begin-

ning of the pulse, which is certainly consistent with redistribution from easily pho-

toionized states to those less easily ionized. At a low microwave field, E < 1 V/cm,
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an approximately exponential decrease in the number of atoms is observed, but the

rate differs from the calculated photoionization rate by a factor of ten. The calcu-

lated ionization rate for E =0.47 V/cm is 5.2× 106 s−1 , far above the observed rate

of 4.6× 105 s−1 . We can compare these rates to the expected perturbation theory

rates, given by Fermi’s Golden Rule, Eq. (1.15), using the bound-continuum matrix

element is given by Delone et al.[31],

〈n|r|ε〉 =
0.4108

n3/2ω5/3 , (3.1)

and the appropriate angular factor is given by,

〈`m| cos θ|` + 1m〉 =

√
(` + 1)2 −m2

(2` + 3)(2` + 1)
. (3.2)

A graphical comparison of the zero time ionization rates is shown in Fig. 3.8. The

Kepler frequency for the n = 430 state is 83 MHz, and an ionization rate approach-

ing this value is not perturbative. High ionization rates deplete the probability

of finding the electron near the ion core, distorting the bound state wavefunc-

tion and Fermi’s Golden Rule can no longer be applied. With microwave fields

below 0.2 V/cm we observe an exponential decrease in the number of surviving

atoms with a rate proportional to the microwave power, as expected from pertur-

bation theory. However, the observed rates are lower than expected. For example

at E = 0.13 V/cm we expect an ionization rate of 3.7 × 105 s−1 , but we observe

5.1× 104 s−1 . Part of the rate discrepancy is due to Stark mixing of the levels. We

are far above the 1/3n5 Inglis-Teller limit, and the stray field of 3 mV/cm converts

the states to Stark states. At n = 430, the 3nE/2 Stark frequency in this regime

is 15 MHz. However, Stark mixing alone clearly does not account for the order

of magnitude discrepancy in ionization rates. Numerically calculated ionization
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rates using the Numerov method to generate bound and continuum wave func-

tions are shown in Fig. 3.9 from n = 10 to n = 90. Similar calculations have been

performed for n = 430, although numerical errors distort the high-` states. The

`-averaged ionization rates are only ∼40% smaller than the np ionization rates.
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Figure 3.8: Short time single photon ionization rate as a function of microwave
field. The calculated rate is given by a simple Fermi’s Golden Rule calculation,
Eq. (1.15) assuming n = 430.

For fields > 0.2 V/cm non-exponential decays are observed, and a few percent

of the atoms are not ionized even in the strongest fields we can apply. In fact the

clearly non-exponential ionization rates seen stem from the fact that we excite a

large number of states with different decay rates with our relatively broadband

4.5 GHz laser linewidth. This will be illustrated using a Floquet - MQDT model

coherently coupling together many bound levels in Chapter 5.
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Figure 3.9: Numerically calculated ionization rates for a m = 0 n, ` state in a
3.5 V/cm microwave field. A congruent ionization rate as a function of ` is seen
for n = 430 rates, although numerical errors distort the high-` states.

3.2.4 Other experimental parameters

At this point it is worth discussing a few of the other experimental parameters that

have been explored but are not relevant enough for an entire section.

Atomic Density

The density of Rydberg atoms can be coarsely adjusted by changing the lithium

oven current or by attenuating the np excitation laser. Increasing the oven out-

put or attenuating the excitation laser by 50% exhibits no noticeable changes in

the microwave ionization spectra. This implies that there are negligible Rydberg-

Rydberg interactions.
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B-Field

Interesting results are also observed due to the 0.4 G magnetic field of the Earth.

Delaying the microwave pulse after initial laser excitation to longer than the cy-

clotron half-period, πm/Bq, almost completely suppresses microwave ionization

for n states above n = 150. For the Earth’s magnetic field, measured to be ∼0.4 G

at an angle of π/4 from the vertical as measured with a LakeShore 421 gauss-

meter, the cyclotron half-period is 440 ns. Results for 200 ns, 7 V/cm, 22 GHz mi-

crowave pulses delayed 700 ns after laser excitation are shown as the dashed curve

in Fig. 3.10, compared to the zero microwave field plotted as a solid curve.
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Figure 3.10: Normalized bound state electron signal as a function of binding en-
ergy for a 22 GHz microwave pulse 700 ns after laser excitation with and without
the Earth’s magnetic field.

Three pairs of Helmholtz coils were constructed and placed orthogonally around

the experimental region. The magnetic field in the experimental region can be min-
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imized to within 40 mG, as measured using a gaussmeter. Canceling the Earth’s

magnetic field allows microwave ionization to occur, as shown as the dotted curve

in Fig. 3.10. The implication is that the 0.4 G magnetic field, along with the 5 mV/cm

stray electric field, converts the initial np state to higher angular momentum states.

Weak crossed electric and magnetic fields have been proposed by Delande and

Gay as a scheme for producing circular Rydberg states[65]. Increasing the electric

field above 10 mV/cm in the presence of a B-field when the delay between exci-

tation and the microwave pulse is long also decreases microwave ionization. The

implication is that `-mixing decreases microwave ionization. This is unsurpris-

ing, as that high-` states do not interact with the ion core and therefore are more

difficult to ionize. This can be easily illustrated. The contribution to the bound-

continuum matrix integral for the 〈430p0|r|0.01 GHzd0〉 as a function of atomic

radius is shown in Fig. 3.11. The dominant contribution to the integral is within

first two percent of the n2 orbital radius. Subsequent microwave ionization exper-

iments (and unless noted all of the data shown in this dissertation) have applied

the microwave pulse within 100 ns of laser excitation to alleviate this problem.

3.2.5 Dressed state comparison

The coherent coupling of states extends beyond the bound states over the limit to

the continuum states as well. This is easily illustrated by exciting the atoms in the

presence of the microwave field. The relevant timing diagram is shown in Fig. 3.12.

The results of scanning the laser over the ionization limit from 300 GHz below to

50 GHz above the limit are shown in Fig. 3.13. A fraction of atoms excited as high

as three microwave photons above the limit are transferred from continuum to

bound states by the microwave pulse and detected after 1 µs using the fast rising

field ionization pulse.
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Figure 3.11: The contribution to the bound-continuum matrix integral for the
〈430p0|r|0.01 GHzd0〉 as a function of atomic radius. The small black arrow points
to the final value.

The resonance structure previously observed below the limit continues smoothly

over the ionization limit, clearly illustrating the strong coherent multi-state coup-

ling both below and across the limit. This implies that the incoherent Anderson

localization models in the scaled frequency regime from Ω = 2 to Ω = n/2 are not

a proper description of microwave ionization, and a simple Fermi’s Golden Rule

approach fails above Ω = n/2. A Floquet-MQDT model, detailed in Chapter 5,

seems to properly model the results shown here.
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Figure 3.12: Timing diagram for dressed state excitation.
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Figure 3.13: Normalized scans of the remaining atoms after 200 ns 17.07 GHz mi-
crowave pulses applied 100 ns before laser excitation, plotted vs binding energy.



Chapter 4

Multiphoton Microwave Ionization at

36 GHz

4.1 Introduction

This chapter discusses first experiments of multiphoton ionization approaching

the photoionization limit using 36 GHz microwave pulses. The goals of the exper-

iment in this chapter are two-fold. First, by increasing the microwave frequency

with respect to the laser bandwidth, we can better resolve the shape of the multi-

photon resonances seen. Second, we seek to better understand the above-threshold

bound state resonances seen when laser excitation occurs in the presence of a mi-

crowave field.

The general experimental methods used in this chapter are discussed in Chap-

ter 2 and specific details will be noted below. An appropriate experimental timing

diagram is shown in Fig. 2.1. The experiment is based on a thermal Li beam laser

excited to np states at the center of a Fabry-Perot cavity for the frequency range of

26 GHz to 40 GHz, illustrated in Fig. 2.12. The microwave cavity is constructed of

two brass mirrors 40.6 mm in diameter with a 75.92 mm radii of curvature, spaced
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by 54.2 mm. The cavity is operated on the TE010 mode at a frequency of 35.95 GHz

with a Q ≈ 1600. The Q/ω filling time of the cavity is therefore τ = 7 ns.

Typically a 200 ns microwave pulse is injected into the cavity 100 ns after the

laser excitation. One microsecond after the laser pulse a negative voltage pulse is

applied to a plate below the microwave cavity to field ionize any remaining atoms

and eject the resulting electrons through a hole in the plate above the cavity. The

electrons are detected with a microchannel plate detector, and we record the signal

with a gated integrator. Electrons produced by photoionization or microwave ion-

ization leave the interaction region before the voltage pulse and are not detected.

4.2 Experimental Results

4.2.1 Microwave power

The recorded spectra for 200 ns, 35.95 GHz microwave pulses at field amplitudes

from 1 V/cm to 70 V/cm taken in 1 dB power steps are plotted as a function of

binding energy in Fig. 4.1. For clarity, the data are plotted in 3 dB power steps.

Interpolation between these data yields the 10% and 50% ionization thresholds,

which are shown in Fig. 4.2 for a laser frequency tuned from -280 GHz to 0 GHz

below the ionization limit. Each data point is averaged over 2000 laser shots and

the microwave pulse is applied on alternating shots for data normalization. We

again see that the requisite field for ionization is approximately the same whether

the atoms are bound by one microwave photon or seven microwave photons. The

theoretical prediction of Jensen et al., Eq. (1.22), is approximately the average value

of the experimentally measured 50% threshold field over the binding energy range

measured. The theoretical 50% threshold prediction is 20.95 V/cm, plotted as a

straight dotted line in Fig. 4.2. Also, we again see an oscillatory structure at the
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Figure 4.1: Fraction of atoms microwave ionized as a function of binding energy
for a 200 ns, 35.95 GHz microwave pulse. Data was collected in 1 dB power steps
from 1 V/cm to 70 V/cm, and plotted in 3 dB power steps for clarity.

microwave frequency in the number of atoms surviving the microwave pulse.

From these data we can also extract the fractional ionization as a function of

microwave power. These data are plotted at binding energies one microwave pho-

ton (n ∼ 300) and 1.5 microwave photons (n ∼ 247) below the ionization limit in

Fig. 4.3. These binding energies represent a trough (36 GHz) and peak (54 GHz)

shown in Fig. 4.2, respectively. These data can be fit to functions of the microwave

field amplitude E of the form f (E) = a(1 − e−bE2
) + c · g(E), where a, b, and c

are constants and g(E) is a best fit parameter not adhering to perturbation the-

ory. For one microwave photon from the limit, these constants are 0.3, 0.021, and

0.12, respectively, and g(E) =ln(E). Although we cannot experimentally create

100% ionization microwave field amplitudes, these constants imply that the 100%
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Figure 4.2: Interpolated thresholds for 10% and 50% microwave ionization as a
function of binding energy for a 200 ns, 35.95 GHz microwave pulse. The straight
dotted line is the prediction of Jensen et al.[21], Eq. (1.22).

ionization threshold is more than forty times the 50% ionization threshold ob-

served.For comparison, the single photon perturbation theory curve is given by

f (E) = 1− e−bE2
, where b = 1.15. This curve, as well as the perturbation theory

prediction for n = 247, are shown as dot-dashed lines in Fig. 4.3.

4.2.2 Bias Voltage

We can quantify the effects of stray field on the microwave ionization rates, as pre-

vious discussed for 17 GHz microwave ionization in section 3.2.2. With the laser

frequency fixed at a frequency below the ionization limit a bias voltage is applied

to the plate above the microwave cavity. A set of bias fields for a laser tuning one

microwave photon and 1.5 microwave photons below the limit is shown in Fig. 4.4.
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Figure 4.3: Fractional ionization as a function of microwave field amplitude one
microwave photon and 1.5 microwave photons from the ionization limit, for a
200 ns, 35.95 GHz microwave pulse. These data sets correspond to n ∼ 300 and n ∼
247, respectively. The fitted curves are of the form f (x) = a(1− e−bx2

) + c · g(x),
where g(x) is a nonperturbation theory best fit function, ln(x) for one photon and
x for 1.5 photons. The perturbation theory predicted results are plotted as dot-
dashed lines of the form f (x) = 1− e−bx2

, where b is 1.15 and 2.06 for one and 1.5
photons, respectively.

Stray fields on the order of 20 mV/cm can increase the observed fractional ioniza-

tion by a factor of two or more, and the fractional ionization as a function of ap-

plied field exhibits a gaussian profile with a full width at half maximum (FWHM)

on the order of 10 mV/cm. Iterating this process of minimizing the fractional ion-

ization for all field plates in the chamber lets us reduce the stray field to 5 mV/cm

in the interaction region, as seen by the 1/9n4 depression of the ionization limit.

Interestingly, the fields required to greatly increase microwave ionization are much

smaller than previously observed at lower n by Pillet et al.[26]. The required static
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field predicted by Eq. (1.18) is a factor of five larger than the FWHM seen in Fig. 4.4.

At this microwave frequency, however, above n = 71 the Inglis-Teller limit is be-

low the requisite static field predicted by Eq. (1.18), and whether the simple model

of Pillet et al. still holds is questionable at best. At n = 300, even the 5 mV/cm

residual stray field is above the 0.7 mV/cm Inglis-Teller field and the excited atoms

are already Stark mixed.
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Figure 4.4: Microwave ionization population fraction as a function of external bias
field, for binding energies 1 and 1.5 microwave photons below the ionization limit
after a 200 ns, 12.6 V/cm, 35.95 GHz microwave pulse. These data sets correspond
to n ∼ 300 and n ∼ 247, respectively. The fitted curves are fitted gaussians, with
FWHM of 8.84 mV/cm and 11.662 mV/cm, respectively.

4.2.3 Dressed state Excitation

We can experimentally observe excitation of the atom dressed by the microwave

field by shifting the microwave pulse so that laser excitation occurs at the center
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the microwave field amplitude applied.

of the 200 ns microwave pulse. The relevant timing diagram is shown in Fig. 3.12.

The results for energies between -200 GHz and 200 GHz of the ionization limit are

shown in Fig. 4.5 for a set of microwave field amplitudes, plotted as the normal-

ized bound state electron signal percentage offset by the applied microwave field

amplitude. The results for binding energies below the ionization limit are shown

in Fig. 4.6 and exhibit an oscillatory structure at the microwave frequency similar

to Fig. 4.2 and Fig. 3.13. Over the ionization limit there is clear evidence of the

microwave field driving above-threshold atoms down to bound states, as shown

in Fig. 4.7. This is similar to the recombination results of Shuman et al.[66] and

Klimenko[67]. We clearly observe continuum electrons as high as ten photons



4.2 Experimental Results 68

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-250 -200 -150 -100 -50 0

-8 -6 -4 -2 0
Fr

ac
ti

on
of

at
om

s
M

W
io

ni
ze

d

Binding Energy (GHz)

Number of MW photons to the limit

12.6 V/cm
17.8 V/cm
25.1 V/cm
35.5 V/cm

50.13 V/cm
70.8 V/cm
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above the ionization limit driven back down to bound states.

Simpleman’s Model

Previous above threshold ionization experiments have had impressive success ex-

plaining results using a simple classical model, known as the Simpleman’s Model[68],

which will be illustrated below. A free electron created in the field, E sin ωt, at time

t0, has initial velocity v0 and corresponding kinetic energy v2
0/2. Integrating the 1-
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D equation of motion yields the velocity and position of the electron at time t,

v(t) = v0 +
E
ω

(cos ωt− cos ωt0) (4.1)

x(t) = x0 + v0(t− t0)−
E
ω

cos ωt0(t− t0) +
E

ω2 (sin ωt− sin ωt0), (4.2)

where v0 and x0 are the velocity and position of the electron at time t0, the time

when the free electron is created in the field. From this we can calculate the kinetic

energy, K(t),

K(t) = K0 +
E2

2ω2 (cos ωt− cos ωt0)
2 +

Ev0

ω
(cos ωt− cos ωt0) , (4.3)

where K0 is the initial kinetic energy.

We can express the cycle averaged kinetic energy in terms of the pondermotive

potential, Eq. (1.14),

〈K〉 = K0 + 2Φpond(
1
2

+ cos2 ωt0)− 2v0

√
Φpond cos ωt0. (4.4)

If the electron is initially at rest, the average kinetic energy is between Φpond and

3Φpond.

At this point it is worth briefly discussing the ponderomotive force in slightly

more detail. A charge e and mass m in an inhomogeneous electric field E(x, t) =

E(x) cos ωt, such as an ionized electron in a microwave cavity, feels a force,

F = eE(x) cos ωt = mẍ, (4.5)

where the charge trajectory can be thought of as the sum of a large slow drift, x0

and small fast oscillation, x1. Taylor expanding Eq. (4.5) about x0 and solving for
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the time averaged drift force gives,

Fpond =
−e2

4mω2∇E2. (4.6)

Equation (4.6) implies charges are pushed towards regions of weak field. The as-

sociated ponderomotive energy, Eq. (1.14), can be quite large in the case of strong

field laser pulses and the ponderomotive shift brings the ionization limit to higher

energies, requiring more photons for ionization[69].

The pondermotive shift for the largest fields used in Fig. 4.7 is only 10 GHz,

and although noticeable in the experimental data as the dashed line in Fig. 4.7, is

too small to explain our results.

The results, however, can be explained by modifying the Simpleman’s Model.

Shuman et al. account for the atomic −1/r potential neglected in the Simpleman’s

Model[66]. The work done on an electron by the field E is,

W = −
∫ t f

0
E(t) · v(t)dt, (4.7)

The electron’s kinetic energy is approximated as −1/r near the core. This gives a

velocity v(t) =
√

2/r = (4/3t)1/3. The work integral, Eq. (4.7), can be evaluated

by approximating the sinusoidal term by a sum of equal and opposite amplitude

parabolas and truncating the integral at t f = t0 + T/2, where T = 2π/ω. The elec-

tron’s time-averaged velocity rapidly decreases with increasing r, and net energy

transfer after one half-cycle is therefore minimal. The maximum energy transfer,

∆W ≈ 3
2

Eω−2/3, (4.8)

is seen when t0 = T/6. The maximum energy transfer predicted by Eq. (4.8) is
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Figure 4.7: Dressed state excitation above the limit for a set of microwave field
amplitudes as a function of energy above the ionization limit for laser excitation
centered about a 200 ns, 35.95 GHz microwave pulse. The data are plotted as the
percent population transferred to bound states, offset by the microwave field am-
plitude. The simple energy transfer formula of Shuman et al., Equation (4.8), is
plotted as the solid diagonal line and the pondermotive shift is plotted as the di-
agonal dashed line[66].

plotted as the solid diagonal line in Fig. 4.7 and well matches our experimental

results. This model also well describes the above-threshold dielectronic recombi-

nation results of Shuman et al. at 38 GHz[66] and Klimenko at 4 GHz, 8 GHz, and

12 GHz[67]. A few other interesting results can be extracted from Fig. 4.7. The reso-

nances corresponding to integer multiples of the microwave frequency are relative

not to the absolute ionization limit, but to the effective ionization limit caused by

remaining stray field. Similar to the results of Shuman, we also see a frequency

shift of the resonances due to the pondermotive shift[70].
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Figure 4.8: Dressed state excitation i microwave photons above the limit, plotted
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Figure 4.7 implies that the population transfer from one photon above the ion-

ization limit to bound states decreases as the microwave field is increased. This

can be easily quantified by tuning the laser frequency to one microwave photon

above the limit and measuring the fractional population transfer as a function of

microwave field. The results are shown in Fig. 4.8 with straight lines drawn be-

tween data points to better separate data sets. The prediction of Eq. (4.8) is shown

as a vertical solid line. Unsurprisingly, only a small fraction of the above thresh-

old population is transferred to bound states when the microwave field is below

the prediction of Eq. (4.8). Peak population transfer from one microwave photon

above the ionization limit to bound states occurs in a microwave field of 13.2 V/cm.

From Fig. 4.7 we can further extract what microwave field must be used to
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maximize transfer i microwave photons above the limit, as shown by traces 2-6 in

Fig. 4.8. The optimal field required to transfer above threshold population from

between one and six microwave photons from the limit to bound states is shown

in Fig. 4.9.
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Figure 4.9: Optimal microwave field amplitude required to transfer above thresh-
old population to bound states, as a function of the number of microwave photons
above the limit, for laser excitation centered about a 200 ns, 35.95 GHz microwave
pulse.

Clearly the requisite field for maximal population transfer to bound states from

i microwave photons above the ionization limit must be higher than the minimum

field required to transfer population to bound states, governed by Eq. (4.8). We

can assume the peak field exhibits a linear energy dependence, like Eq. (4.8), and

empirically fit a function f (i) to find the optimal microwave field i microwave

photons above the limit as f (i) = a ∗ i + b. The coefficients a and b are most

likely functions of the microwave frequency, however for now we can only say
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that a = 7.1 V/cm/photon and b = 6 V/cm/photon for ω =35.95 GHz, yielding

the optimal field in V/cm.

Much like below the ionization limit, these results are highly sensitive to stray

electric fields. We can easily systematically quantify the effects of an applied ex-

ternal field. A DC voltage was applied to the field plate above the microwave cav-

ity. The applied voltage was rastered as the excitation laser energy was iterated,

averaged for 1000 laser shots per point, with the microwave pulse applied every

other laser shot for normalization. The fractional population transferred to bound

states when laser excitation occurs at the center of a 200 ns, 13.2 V/cm, 36 GHz

microwave pulse is shown in Fig. 4.10.
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Figure 4.10: Fraction of population above the ionization limit transferred to bound
states after laser excitation at the center of a 13.2 V/cm 200 ns microwave pulse at
35.95 GHz as a function of laser energy and bias field applied to the upper field
plate.

Applying an external field universally suppresses above-threshold electrons

from transferring to bound states. This is best seen by extracting cross-sections

from Fig. 4.10 at the one and two microwave photon resonance peaks, as shown

in Fig. 4.11. These peaks are both fit to gaussians of widths comparable to those

seen below the ionization limit, e.g. Fig. 4.4. That external fields suppress net re-
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combination is not surprising since external fields increase ionization below the

limit. Recombined bound electrons can be easily ionized by successive cycles of

the microwave field.
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Figure 4.11: Fraction of population one and two photons above the ionization limit
transferred to bound states after laser excitation at the center of a 13.2 V/cm 200 ns
microwave pulse at 35.95 GHz as a function of bias field applied to the upper field
plate.



Chapter 5

A Floquet-MQDT Model of

Multiphoton Microwave Ionization

Explaining multiphoton microwave ionization spectra has been possible with a

Floquet-Multichannel Quantum Defect Theory (MQDT) model, a coherent coup-

ling of Rydberg levels both above and below the ionization limit. Recent theoretical

work on multiphoton microwave ionization by Schelle et al. has looked to Ander-

son localization as an explanation of experimental results[29]. However, an Ander-

son localization model breaks down for one and few photon ionization, predicting

higher ionization rates than experimentally seen. Instead, a combined Floquet -

MQDT approach successfully models the observed system dynamics, where the

observed spectra are determined by the final bound-continuum coupling. In the

sections that follow, Floquet Theory and MQDT will be introduced and the results

of the simulations will be explained.



5.1 Floquet Theory 77

ω

Wβ

Wα

Wα + ω

Wβ + ω

Wβ − ω

Wα − ω

Figure 5.1: Two level Floquet energy diagram.

5.1 Floquet Theory

Floquet theory provides a straightforward method for treating periodic perturba-

tions, positing that periodic perturbations give rise to periodic solutions[35].

We can begin by treating a simple system with a periodic perturbation. The

canonical example of Floquet theory is a simple quantum system of two discrete

states, α and β, in an oscillating field, illustrated in Fig. 5.1. We can assume state α

has energy Wα, and state β has energy Wβ. We can write the periodic perturbation

as 2b cos ωt. The time dependent wave function for this system is

Ψ(r, t) = aα(t)Ψα(r) + aβ(t)Ψβ(r). (5.1)

From this we can construct the time dependent Schrödinger equation in matrix

form,

i
d
dt

 aα(t)

aβ(t)

 =

 Eα 2b cos ωt

2b cos ωt Eβ


 aα(t)

aβ(t)

 . (5.2)
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The essence of the Floquet approach is to replace aα(t) and aβ(t) with the

Fourier sums, ∑n an
iαeinωt and ∑n an

iβeinωt, as well as the e−iqit time dependent factor

for any eigenvalue qi. Explicitly, aα(t) and aβ(t) are

aα(t) = ∑
n

an
iαeinωte−iqit (5.3)

aβ(t) = ∑
n

an
iβeinωte−iqit. (5.4)

These infinite set of an
i{α,β} coefficients are time independent and allow us to find a

new set of time independent eigenvalues and eigenfunctions for our system.This

replacement ensures that the solutions are periodic with period 2π/ω.

We can explicitly plug these Fourier sums into Eq. (5.2),

i
d
dt

 ∑n an
iαeinωte−iqit

∑n an
iβeinωte−iqit

 =

 Wα 2b cos ωt

2b cos ωt Wβ


 ∑n an

iαeinωte−iqit

∑n an
iβeinωte−iqit

 (5.5)

Taking the derivative on the left hand side, as well as simplifying yields,

(qi − nω) ∑
n

an
iαeinωt = Wα ∑

n
an

iαeinωt + b ∑
n

an
iβei(n+1)ωt + b ∑

n
an

iβei(n−1)ωt

(qi − nω) ∑
n

an
iβeinωt = Wβ ∑

n
an

iβeinωt + b ∑
n

an
iαei(n+1)ωt + b ∑

n
an

iαei(n−1)ωt
(5.6)

This yields a set of homogeneous equations for a given n,

(Wα + nω− qi)an
iα + ban+1

iβ + ban−1
iβ = 0

(Wβ + nω− qi)an
iβ + ban+1

iα + ban−1
iα = 0

(5.7)
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We can then write out these set of equations in matrix form,



. . .

Wβ −ω b 0 0 0

b Wα 0 0 b

0 0 Wβ b 0

0 0 b Wα + ω 0

0 b 0 0 Wβ + ω

. . .





...

a−1
iβ

a0
iα

a0
iβ

a1
iα

a1
iβ
...



= qi



...

a−1
iβ

a0
iα

a0
iβ

a1
iα

a1
iβ
...


(5.8)

Written in this fashion, it is clear that this vector composed of an
i{α,β} is simply the

eigenvector of Floquet energy qi and the above Floquet Hamiltonian, denoted HF.

In the matrix of Eq (5.8) the off-diagonal matrix elements couple the nearly res-

onant Wβ and Wα + ω components and the far off-resonant Wα and Wβ + ω com-

ponents. The far off-resonant coupling is usually ignored, and this approximation

is termed the rotating wave approximation. With the rotating wave approximation

it is evident that the matrix of Eq. (5.8) breaks into two by two blocks which are

identical other than overall shifts in energy by multiples of ω. The rotating wave

approximation is widely used for single photon transitions, but is not necessarily

valid for multiphoton transitions.

5.1.1 N-Level Systems

Expanding Floquet theory to a larger N-level atomic system is essentially trivial,

although the resultant energy spectra are often unwieldy. In practice, infinite ma-

trices are not used for numerical calculations. The Floquet matrix only has to be

large enough that the Floquet energies do not significantly change by extending the
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matrix. By the rotating wave approximation the non-resonant off-diagonal matrix

elements coupling Wβ → Wα − ω can be ignored, letting us break the Hamilto-

nian matrix into separable blocks. A Floquet approach has been successfully ap-
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Figure 5.2: Floquet energy spectrum for a 1D n=56 Rydberg atom in a 38 GHz
microwave field.

plied to nondispersing wave packets, which are composed of states coupled by a

microwave field where the microwave frequency equals the n spacing. The near

resonant photon ∆n = 1 couplings are by far the most important, and the rotating

wave approximation can be employed. In this case the Floquet matrix for a 1D
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atom has the form,

H =



. . .

Wn′′′ + 3ω b′′

b′′ Wn′′ + 2ω b′

b′ Wn′ + ω b

b Wn b+

b+ Wn+ −ω b++

b++ Wn++ − 2ω

. . .



,

(5.9)

where the off-diagonal couplings are given by b = 1
2(0.3n2E)[71]. Diagonalizing

the matrix yields the Floquet energies shown in Fig. 5.2 for n = 56 and a 38 GHz

microwave field. In states with positive Stark shifts the electron’s dipole oscillates

out of phase with the microwave field, and in states with negative Stark shifts the

dipole oscillates in phase with the microwave field[72].

Localization models applied to high scaled frequency microwave ionization

suggest the the dominant couplings are the single photon n− n′ transitions, where

n and n′ are separated by approximately one microwave photon and |n− n′| � 1.

In this case one could reasonably expect to use the rotating wave approximation,

again reducing the Floquet Hamiltonian matrix to a single block in tridiagonal

form, as shown in Eq. (5.9). However, there are two difficulties in this procedure.

First, selecting the appropriate near resonant states while keeping the matrix size

reasonable is difficult. When the state spacing is small compared to the photon

energy, selecting the appropriate near resonant state or states is no longer obvious.

Second, the above picture does not have a clear prescription for modeling pho-

toionization to the continuum. Thankfully, both of these problems are solved by
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adopting a quantum-defect theory approach, which will be discussed below.

5.2 Multichannel Quantum-Defect Theory

Multichannel quantum-defect theory (MQDT) has been quite successful in pre-

dicting atomic spectra of multi-electron atoms[73, 74]. Originally developed by

Fano[75, 76] and Seaton[77, 78], much of treatment of MQDT illustrated here is

taken from Cooke and Cromer[79].

The basic principle of MQDT is that the atomic valence electron spends most of

its time far from the ionic core in a coulomb potential. However, when the electron

come close to the core there is a probability of scattering into other states due to

a short range interaction. In spite of the fact that the interaction of the Rydberg

electron with the microwave field does not sound like a short range interaction,

energy exchange can only occur when the electron is near the core, and the inter-

action is effectively short range. This allows for the use of MQDT, as first noted by

Giusti-Suzor and Zoller[16].

5.2.1 A 2-Level Example

Cooke and Cromer best illustrate the methods employed in this section, we will

follow them and begin with a simple two level system, in this case a spin-1
2 particle

in a box of length L with magnetic spin coupling at one end of the box. For clarity,

we can say there is a field ~B from 0 < x < a, where a < L.

We can denote our two spin states as m1 and m2 for spin up and down, re-

spectively. We can construct a set of spinors appropriate to the direction of our

magnetic field as,

Mα = ∑
i

Uiαmi, (5.10)
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where U is the correct unitary transformation matrix. We can then construct a set

of basis wavefunctions for the region of zero magnetic field. Matching boundary

conditions at x = a, we can write a set of basis wavefunctions inside the box as,

ψα = Mα sin(kx + ∆α), (5.11)

where ∆α is the phase shift induced by the magnetic field. Our basis wavefunctions

must also go to zero at our outer infinite wall at x = L, so we can write a second

set of basis functions,

φi = mi sin
(
k(x− L)

)
. (5.12)

We can construct a complete wavefunction out of linear combinations of either set

of basis functions,

Ψ = ∑
i

Aiφi = ∑
α

Bαψα. (5.13)

Substituting Eqs. (5.10), (5.11), and (5.12) into (5.13), as well as judicious use of

Euler’s formula, we can express conditions for our coefficients as,

Aie−ikL = ∑
α

UiαBαei∆α (5.14)

Multiplying both sides by ∑i Uik, gives us

∑
i

Uik Aie−ikL = ∑
i

∑
α

UikUiαBαei∆α . (5.15)

We can now exploit the fact that,

∑
i

UiαUik = δkα, (5.16)
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which lets us reduce Eq. (5.15) to,

∑
i

Uiα Aie−ikL = Bαei∆α (5.17)

If we multiply Eq. (5.14) by eikL we have,

Ai = ∑
α

UiαBαei(∆α+kL) (5.18)

If we impose the condition that Ai and Bα are real, we can split Eq. (5.18) into two

equations,

Ai = ∑
α

UiαBα cos(∆α + kL) (5.19a)

0 = ∑
α

UiαBα sin(∆α + kL) (5.19b)

Similarly, we can multiply Eq. (5.17) by e−i∆α and have two relevant equations,

Bα = ∑
i

Uiα Ai cos(∆α + kL) (5.20a)

0 = ∑
i

Uiα Ai sin(∆α + kL) (5.20b)

Both Eqs. (5.19b) and (5.20b) must have nontrivial solutions, and therefore,

det|Uiα sin(∆α + kL)| = 0 (5.21)

Setting ∆1 = −∆2 = ∆, we find solutions for k,

k =
Nπ ± ∆

L
, (5.22)
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and the associated energy,

E =
N2π2 ± 2Nπ∆

2L2 . (5.23)

5.2.2 N-Level Atomic System

We can now walk through the same MQDT approach for calculating spectra for an

N-level atomic system. Initially, we must first define a set of basis functions. The

previous box outer wall at x = L is replaced with the −1/r Coulomb potential.

The boundary condition at r → ∞ is satisfied by

φi = s(Wi, r) cos(πνi)χi + c(Wi, r) sin(πνi)χi, (5.24)

for an electron of energy Wi and effective quantum number νi, where χi functions

are a product of the angular components of the atomic wavefunction and the inner

core electron wavefunctions. The s(Wi, r) and c(Wi, r) are the regular and irregular

functions, as defined by Seaton[78], yielding wavefunctions that are normalized

per unit energy. They are equivalent to Fano’s f and g functions, the regular and

irregular Coulomb functions and exhibit the appropriate asymptotic behavior as

r → ∞[80],

f (ν, r)→ u(ν, r) sin πν− v(ν, r)eiπν (5.25)

g(ν, r)→ u(ν, r) cos πν + v(ν, r)eiπ(ν+1/2), (5.26)
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with u(ν, r) and v(ν, r) are exponential increasing and decreasing functions of r,

given by,

u(ν, r) = (−1)`ν1/2π−1(2r/ν)−νer/ν (Γ(ν− `)Γ(ν + ` + 1)1/2 (5.27)

v(ν, r) = (−1)`ν1/2(2r/ν)νe−r/ν (Γ(ν− `)Γ(ν + ` + 1)−1/2 , (5.28)

where Γ is the gamma function, defined as,

Γ(z) =
∫ ∞

0
tz−1e−tdt. (5.29)

We can assume that for large r the potential is just a Coulomb potential, and

only within some value rc is the potential perturbed. We can therefore match our

boundary conditions at r = rc, forming

ψα =

(
∑

i
Uiαχis(Wi, r)

)
cos(πµα)−

(
∑

i
Uiαχic(Wi, r)

)
sin(πµα), (5.30)

where−πµα is a scattering phase shift. Equations (5.30) and (5.24) are exactly anal-

ogous to Eqs. (5.11) and (5.12) in the previous section, where mi is now represented

by χi and the phase shift ∆α is now −πµα. We can generate a total wavefunction

out of linear combinations of either set of these basis functions,

Ψ = ∑
i

Aiφi = ∑
α

Bαψα (5.31)

Similar to Eqs. (5.14) and (5.17), we can generate a set of equations

Aie−iπνi = ∑
α

UiαBαeiπµα

Bαeiπµα = ∑
i

Uiα Aie−iπνi

(5.32)
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If we again impose the condition that Ai and Bα are real, we generate a set of four

equations,

Ai = ∑
α

Uiα cos
(
π(νi + µα)

)
Bα (5.33a)

0 = ∑
α

Uiα sin
(
π(νi + µα)

)
Bα (5.33b)

Bα = ∑
i

Uiα cos
(
π(νi + µα)

)
Ai (5.33c)

0 = ∑
i

Uiα sin
(
π(νi + µα)

)
Ai. (5.33d)

Exploiting a few trigonometric identities, Eq (5.33d) can be rewritten as,

cos πµα

(
∑

i
Uiα
(

tan(πνi) + tan(πµα)
)

Ai cos(πνi)
)

= 0. (5.34)

This can be condensed to,

(tan(πµ)UT + UT tan(πν))~a = 0, (5.35)

where tan(πµ) and tan(πν) are diagonal matrices and ~a has elements composed

of cos(πνi)Ai. We can multiply both sides of the above equation by U, and substi-

tution of R = U tan(πµ)UT further reduces Eq. (5.35) to

[R + tan(πν)]~a = 0. (5.36)

We can define R + tan(πν) as our effective Hamiltonian, with pseudoenergy Q,

(
R + tan(πν)

)
~a = Q~a. (5.37)

The diagonal matrix tan(πν) describes the original basis, and R the perturbation.
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3 2 1 c1 c2

Figure 5.3: Simple MQDT model of microwave ionization, illustrating three bound
channels and two continua, each shifted by one microwave photon.

The vector~a represents an eigenstate constructed out of the original unperturbed

basis. The R perturbation controls the mixing of the original states on to the ~a

eigenstates.

As we have derived Eq. (5.36), it appears to apply only to bound states. How-

ever, we are interested in coupling to the continuum as well, the problem illus-

trated by Fig. 5.3.

We can note that the νi in Eq. (5.34) and ν in Eq. (5.36) represent both a binding

energy and a phase, πνi or πν, respectively. It is the phase which is important in

quantum defect theory, and we can include continuum states by replacing πνi by

τ for all continuum states. The QDT matrix that describes the three bound, two
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continua channels shown in Fig. 5.3 can be written as,



tanπν3 Rbb

Rbb tanπν2 Rbb

Rbb tanπν1 Rbc

Rbc tanτ Rcc

Rcc tanτ


. (5.38)

Diagonalizing the QDT matrix at any energy gives the eigenphase-shifts τρ. If there

are nc continua then there are nc τρ phase shifts. Diagonalizing the QDT matrix of

Eq. (5.37) also gives the eigenfunctions. At any energy, for each ρ we obtain the

wave function,

Ψρ = ∑
i

aiρ cos(πνi)ψi(νi) + ∑
j

acjρ
cos(τρ)ψcjρ

(τρ). (5.39)

The effective quantum number νi in the bound channels in simply calculated as

the positive solution to

W = Wi −
1

2ν2
i

(5.40)

The wavefunction of Eq. (5.39) is not normalized, and we wish to normalize it

as a continuum wave function, i.e. normalized per unit energy. The most straight-

forward method is to define a normalization constant for each ρ, such that,

N2
ρ = ∑

j
A2

cjρ
= ∑

j

a2
cjρ

cos2 πτρ
(5.41)

The normalized wavefunction is simply the unnormalized wavefunction, Eq. (5.39),
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divided by Nρ. Explicitly,

Ψρ =
1

Nρ

(
∑

i
aiρ cos(πνi)ψi(νi) + ∑

j
acjρ

cos(τρ)ψcjρ
(τρ)

)
. (5.42)

Each normalized bound state coefficient can be written as

A2
iρ(W) = (

aiρ

Nρ cos(πνi)
)2. (5.43)

For each bound channel, the ρ values of A2
iρ are summed to produce i normalized

A2
i coefficients. Explicitly,

A2
i (W) = ∑

ρ

A2
iρ(W). (5.44)

It is important to remember that this is the coefficient for the square of a wave-

function normalized per unit energy, which differs from the normal bound state

normalization by 1/ν3
i .

5.3 Combined Floquet-MQDT analysis

Typically, MQDT is used to model the different ionic states of an atom with differ-

ent ionization limits. In this case, the different limits in this problem are the single

ionization limit shifted by different numbers of microwave photons,

Wi = 0 + (i− 1)ω. (5.45)

This defines the limit of channel 1 as W1 = 0, channel 2 as W1 = ω, W2 = 2ω, and

so forth. Similarly, we define the limits of continuum channels as

Wj = 0− jω, (5.46)
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shifting the continuum limits to successively lower energies. The effective quan-

tum number ν1 is simply calculated as the positive solution to

W =
−1
2ν2

1
, (5.47)

and successive νi are calculated as positive solutions to

1
2ν2

i
=

1
2ν2

1
+ (i− 1)ω (5.48)

where ω is the microwave frequency in atomic units.

A requirement of QDT is that the coupling between channel be of short range.

The n to n′ electric dipole matrix element is given by[31],

〈n|z|n′〉 =
0.4108

(nn′)3/2ω5/3 . (5.49)

The 1/n3 due to the normalization of the radial matrix elements at the core im-

plies that the coupling is of short range, and thus satisfactory for use in a MQDT

calculation.

It is straightforward to connect the electric dipole matrix element to the R ma-

trix element of QDT. We can consider a bound state which can be ionized by a

single photon, what in Fig. 5.3 would be a state in channel 1 going to channel c1.

In the low microwave field, or Fermi’s golden rule limit, the photoionization rate

Γ can be written as,

Γ = 2π|〈n|zE
2
|ε〉|2 =

R2

πn3 , (5.50)

where the bound-continuum dipole matrix element is given by[31],

〈n|zE
2
|ε〉 =

0.4108E
2n3/2ω5/3 (5.51)
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From this we can calculate the off-diagonal coupling R as a function of the field

strength, E, as

R =
0.4108πE
21/2ω5/3 . (5.52)

Note that this coupling matrix element does not depend on n and is therefore iden-

tical for all the bound-bound, bound-continuum, and continuum-continuum inter-

channel couplings.

To illustrate this method, we will perform an example calculation for a 5 V/cm

17.068 GHz microwave field with i bound channels and j continuum channels,

where i = j = 4. The specific number of bound and continuum channels used

is not important, as long as multiple continua are included in the calculation. It is

only necessary to make a compromise between including all the relevant coupled

states and keeping the computation time reasonably short.

From Cooke and Cromer we can find the j appropriate MQDT eigenvalues and

eigenvectors by splitting our R matrix into four quadrants (bound-bound, bound-

continuum, continuum-bound, and continuum-continuum) and solving,

{R′cb[R
′ + tan πν′]−1

bb R′bc − R′cc}a′c = εja′c. (5.53)

Here R′cb is a matrix of the form,

R′cb =


· · · 0 R

· · · 0 0

. . . ...
...

 . (5.54)
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The matrix R′bc is similarly composed,

R′bc =


...

... . . .

0 0 · · ·

R 0 · · ·

 . (5.55)

Explicitly, we can also write down the R′cc matrix as,

R′cc =



0 R 0 0 · · ·

R 0 R 0 · · ·

0 R 0 R · · ·

0 0 R 0 · · ·
...

...
...

...
. . .


. (5.56)

Finally, the [R′ + tan πν′]−1
bb matrix can be written as,

[R′ + tan πν′]−1
bb =



. . .
...

...
...

...

· · · tan πν4 R 0 0

· · · R tan πν3 R 0

· · · 0 R tan πν2 R

· · · 0 0 R tan πν1



−1

. (5.57)

Solving the above eigenvalue problem generates j eigenvectors, any one of

which we can denote as a′j. If we combine these eigenvectors into a j × j matrix,

A′cc, where each column represents a normalized eigenvector, we have a rotation

matrix that transforms our initial continuum basis into eigencontinuum for a given

ν. The general approach is to then calculate the admixture of the bound channels

into the eigencontinua, and rotate then back to our original basis.
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As pointed out by Jones, if we want to eventually compute the time propa-

gated observed spectrum, it is important to keep track of the complex phase fac-

tors, 1−iε√
1+ε2 [81, 82]. This is not handled in the original Cooke and Cromer formu-

lation presented above, since they are only interested in calculating the spectral

amplitudes. A similar treatment of autoionizing 4pNd calcium wave packets by

Pisharody and Jones[83] serves as an example, although an incorrect phase factor

creates a factor of two discrepancy.

To calculate the admixture of bound channels into continuum channels, we can

simply compute the matrix Abc, computed as,

Abc = −C−1
bb [R′ + tan πν′]−1

bb R′bc A′ccεcc A′Tcc eiπν′ . (5.58)

The matrix C−1
bb is a diagonal matrix with elements 1

cos πνi
, and εcc is a diagonal ma-

trix with elements
1−iεj

1+ε2
j
, which provides the appropriate phase and normalization

factors. The eiπν′ factor shifts the maximum rate out of the bound states to time

t = 0. Each row of the matrix Abc represents the admixture of bound channel i in

each of the j continuum channels, at a given ν. Repeating this process over many

different ν lets us compute j arrays, where each array is the complex spectral am-

plitudes of the bound channels into one of the j continuum channels. The bound-

continuum admixture amplitudes as a function of ν are plotted for each continuum

channel in Fig. 5.6 for a 5 V/cm, 17.068 GHz coupling field. The complex phase is

retained throughout the calculation, but not plotted in the figure below. Structure

in the admixture amplitude at the 17 GHz microwave frequency is evident in all

four channels.

However, we want to calculate the spectra not at time t = 0, but after a mi-

crowave pulse of time T. To do this we must convolute our calculated spectra with

a sinc function that is the Fourier Transform of a step function of width T. We in
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Figure 5.4: Admixture amplitudes for each of the four continuum channels in
a four bound, four continuum MQDT calculation, with channels coupled by a
5 V/cm, 17.068 GHz microwave field. The complex phase is retained throughout
the calculation, but not plotted here.
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fact do not need to actually generate the required sinc function, and can instead

compute the Fast Fourier Transform of the complex spectral amplitudes, and mul-

tiple each element of the k element transformed array by our step function of width

T.

In practice, the step function array is defined as being a k element array of ele-

ments equal to one between 0 ≤ t ≤ T, and zero elsewhere. If the initial complex

spectral amplitude array begins at energy W1 GHz and ends at W2 GHz, the dif-

ference between successive elements of the step function are 1/abs(W2 −W1) ns.

The step function array begins at time t = 0, and the second half of the array rep-

resents negative times. After multiplying the complex spectral amplitude array

by the step function array, we can perform an inverse FFT to produce the com-

plex spectral amplitudes after a microwave pulse of width T. We can refer to the

complex spectral amplitude after pulse T as F(T). The convolution with the sinc

function is repeated for all j arrays representing transfer to each of the j continuum

states included in the calculation. The results of the convolution of the admixture

spectra with the sinc function corresponding to a 200 ns step function for each con-

tinuum channel are plotted in Fig. 5.5. The structure at the microwave frequency

that was evident in the t = 0 spectra is now less clear.

In the lab we measure real values, and we must therefore convert our complex

amplitudes to real amplitudes. We also measure not the population transferred out

of the bound states, but instead the population remaining in the bound states. So,

we can finally compute the remaining population not transferred to the continuum

as,

1−∑
c
|F(T)2|, (5.59)

at each ν and plot the results as a function of ν, as shown in Fig. 5.6, for a 200 ns,

5 V/cm, 17 GHz microwave pulse. A 5000-point moving average simulates the ex-
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Figure 5.5: Admixture amplitudes for each of the four continuum channels in
a four bound, four continuum MQDT calculation, with channels coupled by a
5 V/cm, 17.068 GHz microwave field, after a 200 ns pulse. The complex phase is
retained throughout the calculation, but not plotted here.
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perimental incoherent bandwidth of the excitation laser. Unfortunately, the 17 GHz

structure experimentally observed is non-evident in the calculated results. How-

ever, the above MQDT process is not without promise. Increasing the coupling be-

tween channels drives more population from bound to continuum states, as does

increasing the microwave pulse duration.
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Figure 5.6: Calculated MQDT remaining atom spectra for a 200 ns, 5 V/cm 17 GHz
microwave pulse.



Chapter 6

Final State Distributions

Previous work by Maeda and Gallagher[84, 85] and Noel, Griffith, and Gallagher[86,

87] has well illustrated atomic population transfer using microwave pulses in the

regime where the scaled frequency is close to unity. The question remains of

whether non-ionized atoms are transferred out of initial np states at high scaled

frequency. This is best investigated by replacing the fast rising field ionization

pulse used previously with a slower rising field ionization pulse. An example tim-

ing diagram is shown in Fig. 6.1.

0 200 400 600 800 1000 1200

time (ns)

0-200 V/cm

Laser
Pulses

200 ns
MW Pulse

Field Pulse

Figure 6.1: Experimental timing diagram.

The slowly rising field ionization pulse is generated using a trigger transformer,

rising to 400 V in 1 µs. Excited atoms diabatically ionize at a field proportional to

1/9n4, so as the field increases lower n states ionize. This creates a temporal map
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of the distributions of final states. A calibration scan with no applied microwave

field is shown in Fig. 6.2a.

Rather than using a gated integrator, data are collected by capturing the oscil-

loscope trace of the MCP signal. The data are averaged over 256 laser shots and

recorded by the computer via the oscilloscope’s GPIB interface. The data can then

be plotted as greyscale maps as a function of binding energy and detection time,

where the greyscale corresponds to the MCP signal amplitude in millivolts. Since

electrons are detected the signal is negative, and a large signal shows as black in

the greyscale plots. The beginning of this chapter is an overview of the experimen-

tal results, followed by a simple Floquet model as a possible explanation of the

observations.

6.1 Calibration

Previous work by Noel et al.[88] has shown that higher angular momentum states

ionize in higher fields. If microwave pulses distribute initial np states to other

n states, this needs to be discerned from transfer to other ` states. Since higher

angular momentum states are not easily optically accessible, particularly with our

current excitation scheme, this is a nontrivial problem.

This problem can be overcome by distributing the laser excited population over

the Stark manifold using a small DC field pulse during state excitation. The electric

field needs to also be smaller than the 1/3n5 Inglis-Teller limit to avoid mixing n-

states. Experimentally, the SRS DG535 pulse/delay generator variable amplitude

pulse that controls the microwave pulse was connected to the top plate over the

excitation region, providing a 200 ns DC pulse during laser excitation. The results

of 0.1 V/cm 0.2 V/cm, and 0.3 V/cm fields are shown in Fig. 6.2. These fields reach

the Inglis-Teller limit at 265 GHz, 349 GHz, and 411 GHz, respectively. The 82p
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Figure 6.2: Extracting the final state angular momentum distributions. Figure (a)
is the zero field state distribution. Figures (b)-(d) are the final state distributions
when laser excitation occurs in the center of a 200 ns 0.1, 0.2, and 0.3 VDC pulse,
respectively.

state, for example, bound by 490 GHz, is shown in Fig. 6.3, along with the n = 82

states in a 0.1 V/cm field. Both the diabatic and adiabatic ionization peaks are

visible in the zero field case, and the peaks have a FWHM of approximately 50 ns.

Applying a 0.1 V/cm field delays the diabatic peak of the detected atoms by 50 ns

and broadens the electron signal to a FWHM of 160 ns. Therefore, higher ` states

require slightly higher fields to ionize. The higher ` states for a given n appear to

require roughly a factor of two higher field for ionization. The implications of this

are that it is difficult to differentiate between transfer to higher ` states and transfer

to lower n states.
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Figure 6.3: The n = 82 state excited in zero field and in a 0.1 V/cm DC pulse, as a
function of detection time.

6.2 Experimental Results

6.2.1 Microwave power

Applying a microwave pulse redistributes the initial np population to both higher

and lower lying states. Results for a 200 ns microwave pulse at 17.1105 GHz for

a set of field amplitudes from 0.6 V/cm to 1.8 V/cm are shown in Fig. 6.4. State

redistribution is small for the lowest field amplitude shown, and microwave ion-

ization begins to interfere with final state detection for the largest field amplitude

shown.

Scaling the final state distribution map, for example Fig. 6.4b, as a function of

scaled microwave frequency is shown in Fig. 6.5. Population transfer out of the

initial state occur near scaled frequencies, Ω = 1, 2, 4. However, integer scaled
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Figure 6.4: Final state distributions for 200 ns 17.1105 GHz microwave pulses for
a set of field amplitudes. Figures (a) - (d) are for field amplitudes of 0.6 V/cm,
0.9 V/cm, 1.2 V/cm, and 1.8 V/cm, respectively.

frequencies do not predict whether population transfer occurs to higher states,

such as at Ω = 4, or lower states, such as at Ω = 1, 2. The most likely explanation

for population transfer near integer scaled frequency values is that they lie close to

integer ∆n transitions resonant transitions. The respective p− s and p− d ∆n = 2

transitions occurs at Ω = 1.59 and Ω = 1.93, the ∆n = 3 transitions at Ω = 2.54

and Ω = 2.9, and ∆n = 4 transitions at Ω = 3.46 and Ω = 3.83. It appears

as though there is no strong correlations between population transfer and scaled

microwave frequency.
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Figure 6.5: Final State distribution for 200 ns 17.1105 GHz, 0.9 V/cm microwave
pulse as a function of scaled microwave frequency.

6.2.2 Microwave frequency

The Fabry-Perot cavity was tuned slightly off-resonant to determine the final state

distribution changes as a function of microwave frequency. The -3 dB power points

of the cavity were located 6 MHz apart, so the microwave frequency was tuned

3 MHz above the cavity resonant frequency of 17.1095 GHz and the input power

was doubled. The results are shown in Fig. 6.6 for 200 ns 0.6 V/cm microwave

pulses. There seems to be no discernible difference between the two data sets taken

with a frequency difference of 6 MHz. However, when the cavity is operated well

off-resonance, essentially as a microwave horn, significant spectral differences are

observed. The results of 200 ns microwave pulses at 17.1095 GHz (on-resonant)

and 17.2085 GHz (off-resonant) are shown in Fig. 6.7. The off-resonant microwave

power is estimated to be comparable to the on-resonant 0.6 V/cm by comparison

of microwave ionization rates.
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Figure 6.6: Final state distributions for 200 ns, 0.6V̇/cm microwave pulses at (a)
17.1065 GHz and (b) 17.10125 GHz.
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Figure 6.7: Final state distribution for 200 ns 0.6 V/cm microwave pulses at (a)
17.1095 GHz and (b) 17.2085 GHz

6.2.3 Microwave pulse length

Increasing the microwave pulse length does not significantly alter the final state

distributions. Final state distributions for 17.1105 GHz, 0.6 V/cm microwave pulses

at pulse lengths of 200, 400, 600, and 2000 ns are shown in Fig. 6.8. More microwave

cycles would presumably allow for greater population transfer to weakly coupled

final states, but the differences over an order of magnitude are negligible. How-

ever, 200 ns is already more than 3000 microwave cycles, and further work should

investigate few-cycle microwave population transfer as previously done at lower

scaled frequency[88].
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Figure 6.8: Final state distributions for 17.1105 GHz, 0.6 V/cm microwave pulses
for a set of microwave pulse lengths. Figures (a) - (d) are for 200 ns, 400 ns, 600 ns,
and 2 µs microwave pulse lengths, respectively.

6.2.4 High n

Some of the most interesting final state distribution results are seen at very high n,

near the ionization limit. However, final state distributions of very high n states are

experimentally the most difficult to obtain. The slowly rising field pulse is not as

efficient as the ∼ 5 ns field pulse for bound state electron detection, with efficiency

decreasing as a function of increasing n. Electrons ionized by the fast field pulse

receive a larger impulsive kick in the direction of the detector. When using the

slow field pulse the ionized electrons are not strongly pushed towards the detec-

tor, and the detection efficiency suffers. This can best be overcome by decreasing

the distance between the experimental region and the detector, at the expense of
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increasing the stray field the atoms are exposed to. Data were taken with higher ef-

ficiency that better illustrate the dynamics at higher n by using a microwave horn

and a field plate spacing of 2 cm. These data are shown for a 200 ns microwave

pulse at 17.85 GHz and a field amplitude of approximately 3 V/cm in Fig. 6.9.

-250 -200 -150 -100 -50 0

Binding energy (GHz)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ti
m

e
(µ

s)

-60

-50

-40

-30

-20

-10

0

10

(a)

-100 -80 -60 -40 -20 0

Binding energy (GHz)

0

0.02

0.04

0.06

0.08

0.1

Ti
m

e
(µ

s)

-60

-50

-40

-30

-20

-10

0

10

(b)

-250 -200 -150 -100 -50 0

Binding energy (GHz)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Ti
m

e
(µ

s)

-60

-50

-40

-30

-20

-10

0

10

(c)

-100 -80 -60 -40 -20 0

Binding energy (GHz)

0

0.02

0.04

0.06

0.08

0.1

Ti
m

e
(µ

s)

-30

-25

-20

-15

-10

-5

0

5

(d)

Figure 6.9: Final state distributions for (a)-(b) zero microwave and (c)-(d) 200 ns,
17.85 GHz, 3 V/cm.

Notably, for atoms bound by less than 100 GHz, population is clearly trans-

ferred out of the initial state to n states one photon below the ionization limit, as

shown in Fig. 6.9d. Oscillations in the remaining population at the microwave

frequency are clearly visible. These high n results illustrate that population is

“trapped” one microwave photon below the limit, with population easily mov-

ing to n states centered about n = 430, but not ionizing. For example, a significant

portion of the population initially bound by 90 GHz, five microwave photons from
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the ionization limit, is transferred to n states one microwave photon from the ion-

ization limit. There appears to be almost no population transfer from n states five

microwave photons from the limit to states four, three, or two microwave photons

from the ionization limit. This implies that the coupling between the final bound

state and the continuum is what mediates microwave ionization. This coincides

with the Floquet-MQDT model discussed in Chapter 5, as illustrated in Fig. 5.3.

6.2.5 Bias Voltage

Applying a small bias field has greatly increased the microwave ionization yield,

both at low scaled frequency[26] and high scaled frequency[28]. This has previ-

ously been discussed in sections 3.2.2 and 4.2.2. The final state distributions when

a small bias voltage is applied to top field plate are shown in Fig. 6.10, for bias

fields from 0 to 30 mV/cm in 10 mV/cm steps. A 10 mV/cm bias field increases

population transfer out of the initial np state to both higher and lower states.

6.3 Single State Analysis

Transitions from an initial np state to a distribution of final states appear to be de-

scribable using a Floquet diagram, with the initial np state making transitions to

other n` states via a series of avoided crossings. To make the calculations more

manageable and the resultant plots clearer, angular momentum states for ` > 6

have been omitted. At least ten microwave photons above and ten microwave pho-

tons below the initial state are included in the calculation. The resultant Floquet

diagrams are, in a word, messy. This section will use some of the clearer Floquet

diagrams of adjacent n states to illustrate the viability of the technique to describe

experimental final state spectra, shown in Fig. 6.11. The general observable trend
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Figure 6.10: Final state distributions for bias voltages from 0 to 30 mV/cm and
17.1105 GHz, 0.6 V/cm, 200 ns microwave pulses. Figures (a) - (d) are bias fields
0 mV/cm, 10 mV/cm, 20 mV/cm, and 30 mV/cm, respectively.

seen in these single state plots is that the results are dominated by whether the

microwave frequency is resonant with the states lying one photon above or below

the initial state. In this energy regime for 17 GHz microwave photons, this corre-

sponds to the ∆n = 2 states.

The final state distributions for the initial 90p state after a 200 ns 17.1015 GHz

microwave pulse for field amplitudes up to 1.8 V/cm are shown in Fig. 6.12a. The

spectra are extracted vertical slices from Fig. 6.4 . The equivalent Floquet diagram

is shown in Fig. 6.12b. The 90p state does not appear to strongly couple to other

states, and the non-ionizing population primarily remains in the initial state.

The final state distributions when the laser is tuned to the n = 91p transi-
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Figure 6.11: Final state distributions for 200 ns 17.1105 GHz microwave pulses for
a set of field amplitudes in the range of n = 90 to n = 94. Figures (a) - (d) are for
field amplitudes of 0.6 V/cm, 0.9 V/cm, 1.2 V/cm, and 1.8 V/cm, respectively.

tion for a set of 17.1015 GHz microwave fields from zero to 1.8 V/cm are shown

in Fig. 6.13a. As the microwave field amplitude increases, the final state distribu-

tion begins to include higher and lower n states. Extracting the ionization times

of np states in zero field, Fig. 6.2a, allows for decoding the composition of final

states. For even small field amplitudes there is coupling to the n = 84 (t = 462 ns)

state and n = 100 (t = 342 ns) state. For fields above 1.2 V/cm the initial 91p state

is transferred to the n = 116 (t = 286 ns) state. These results are congruent with

the n = 91 Floquet map, shown in Fig. 6.13b, where the 91p state couples with the

n = 116 manifold in a field of 1.3 V/cm.

Final state distributions for the initial n = 92p state are shown in Fig. 6.14a. For

all microwave field amplitudes from 0.6 V/cm to 1.8 V/cm there is strong coupling
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to lower lying states. At zero microwave field the 92p state is near-resonant with

n = 90 transitions, lying between the 90d state and the rest of the n = 90 manifold.

From the experimental spectra, transitions are most likely multiphoton transitions

to n = 90` states where ` ≥ 4. The 90p state ionize at t = 412 ns, and higher

angular momentum states ionize later. The n = 92 Floquet map, Fig. 6.14b, sug-

gests an avoided crossing between the n = 92p state and the n = 90 (t = 412 ns)

manifold in fields as small as 0.1 V/cm. However, dipole selection rules prevent

direct transitions from 91p to states other than 90s and 90d. Therefore, the transi-

tions must be mediated by other off-resonant s and d states to reach higher angular

momentum states. Experimentally, if the microwave field amplitude is increased

to 1.2 V/cm there is population transfer to n = 134 (t = 216 ns), which is also in

agreement with the calculated Floquet map, as well as small coupling to n = 111

at t = 304 ns.

For a fourth state distribution, we can look at the n = 93p initial state. The

experimental final state distributions are shown in Fig. 6.15a for the same set of

microwave fields as n = 91p and n = 92p. The n = 93p final state distributions

are more complicated than the previously discussed states. Experimentally, there

is coupling to the n = 106 and n = 116 states for fields greater than 0.9 V/cm, and

coupling to the n = 137 state for a microwave field amplitude of 1.2 V/cm. There

also is transfer to lower n states with coupling to the n = 76 manifold for a field of

0.9 V/cm. Interestingly, the initial 93p is almost completely depleted by a 1.8 V/cm

microwave pulse, which is well below the ∼ 8 V/cm required for 50% ionization

discussed in Chapter 3. The relevant Floquet map is shown in Fig. 6.15b. The

Floquet map implies coupling at 1 V/cm to higher 93` states that is not obvious in

the experimental spectra.

Finally, the final state distribution for the initial n = 94p state is shown in
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Fig. 6.16a. The equivalent Floquet map is shown in Fig. 6.16b. Much like the n = 91

state, there appears to only be some transfer to higher n states with microwave

field amplitudes above 1 V/cm. These initial results suggest a more detailed ex-

ploration of these final state distributions as a function of applied microwave field

and frequency is needed.

6.3.1 Dressed-state comparison

Non-ionizing population transfer to higher or lower states appears to depend pri-

marily on the applied microwave frequency for a given n state. We can easily

compare the final state distributions when the microwave pulse occurs after and

during laser excitation, as shown in Fig. 6.17. As previously seen in the spectra

shown in Chapters 3 and 4, the bound-state yield is lower when laser excitation

occurs in the microwave field. However, it appears as though it again does not

really matter how the initial state is excited and bound-bound population trans-

fer is similar in the two cases. This implies that there is no adiabaticity condition

necessary for turning on and off the microwave field.
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Figure 6.12: Final state distribution for n = 90 after a 200 ns 17.1015 GHz mi-
crowave pulse and the equivalent Floquet map. Zero field states are labeled by
n`. The initial n = 90p state is at 0 GHz in the Floquet map.
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Figure 6.13: Final state distribution for n = 91 and the equivalent Floquet map.
Zero field states are labeled by n`. The initial n = 91p state is at 0 GHz in the
Floquet map.
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Figure 6.14: Final state distribution for n = 92 and the equivalent Floquet map.
Zero field states are labeled with n`.
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Figure 6.15: Final state distribution for n = 93 and the equivalent Floquet map.
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Figure 6.16: Final state distribution for n = 94 and the equivalent Floquet map.
Zero field states are labeled with n`.
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Chapter 7

Conclusions

The results presented in this dissertation present an interesting picture of microwave

ionization of Rydberg atoms. The original intent of the project was to connect field

ionization to photoionization. It appears as though, as they say in New England,

“you can’t get there from here.” The original picture of dynamic Anderson local-

ization crossing over to a multi-photon photoionization picture simply does not

hold. Instead, a coherent coupling of levels both above and below the ionization

limit describe multiphoton microwave ionization.

Multiphoton microwave ionization occurs at rates similar to the single pho-

ton microwave ionization rates observed, where ten or fifteen microwave photon

ionization appears to require a similar threshold field as single microwave photon

ionization. The rates at which single microwave photon ionization occurs are more

than an order of magnitude below the Fermi’s Golden Rule predicted ionization

rates for microwave fields on the order of 1 V/cm and above. These multiphoton

ionization rates can be well described using a MQDT-Floquet model, coherently

coupling together levels both above and below the ionization limit.

Along the path of connecting field and photoionization, this dissertation presents

a variety of smaller conclusions. Temporally splitting the Coherent Evolution-30
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pump light using a system of external Pockels cells to drive dye lasers has been

ideal for np Rydberg Li creation at a kHz pulse repetition frequency. The high rep-

etition rate of the Nd:YLF laser allows for data collection and analysis techniques

not feasible at 30 Hz prf, and more than makes up for the slightly lower dye laser

peak pulse powers.

Similar to the results seen at low scaled frequency, microwave ionization at

both high scaled frequency and above the ionization limit is greatly increased by

the application of a small electric field.

Above the ionization limit, maximum multiphoton microwave transfer to bound

states is well described by a simple classical model first developed by Shumanet

al. that accounts for the Coulomb potential of the atom. This model seems to

well describe the maximum above-threshold energy transfer to bound states as a

function of microwave field at 36 GHz, and properly describes previous results by

Klimenko at 4, 8, and 12 GHz[67].

Finally, an initial survey of final state distributions for microwave transfer to

higher and lower bound states is presented in Chapter 6. Bound state population

appears to be “trapped” one microwave photon from the ionization limit, lending

credence to a model of multiphoton microwave ionization where all ionization oc-

curs through the n state one photon from the ionization limit. Population transfer

to other bound states appears to be dominated by resonant single-photon transi-

tions. A more comprehensive study of the final state distributions as a function

of microwave frequency should be undertaken in the future. The most obvious

next experiment would be to simply fix the excitation laser energy and microwave

field amplitude, measuring the final state distribution as a function of microwave

frequency. A similar experiment would be to instead fix the microwave frequency

and measure the final state distributions as a function of microwave field ampli-



7 Conclusions 121

tude. These experiments should be relatively straightforward to conduct and ana-

lyze, and provide a solid jumping-off point for a future student new to the lab.



Appendix A

Nondispersing Bohr Wave Packets



A Nondispersing Bohr Wave Packets 123
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Long-lived, nondispersing circular, or Bohr, wave packets are produced starting from Li Rydberg atoms

by exposing them first to a linearly polarized microwave field at the orbital frequency, 17.6 GHz at

principal quantum number n ¼ 72, which locks the electron’s motion into an approximately linear orbit in

which the electron oscillates in phase with the microwave field. The microwave polarization is changed to

circular polarization slowly compared to the orbital frequency, and the electron’s motion follows, resulting

in a nondispersing Bohr wave packet.

DOI: 10.1103/PhysRevLett.102.103001 PACS numbers: 32.80.Rm, 32.80.Ee, 32.80.Qk

The most intuitive picture of an atom is classical, one in

which the electron moves about the ion in a circular Bohr

orbit. Although it may not be obvious how to reconcile this

simple picture with the quantum mechanical description of

an atom, given in terms of time-independent wave func-

tions of energy eigenstates, the resolution of this apparent

paradox was provided by Schrödinger [1]. He showed that

for the harmonic oscillator that wave packets, with local-

ized probability distributions which move as a classical

particle does, can be constructed from coherent superposi-

tions of the time-independent spatial wave functions of

different energy eigenstates.

Wave packets remained theoretical constructs until the

advent of mode-locked lasers, which have pulses short

enough to provide adequate frequency bandwidth to pro-

duce coherent superpositions of several Rydberg states [2–

4]. Rydberg states, those of high principal quantum number

n, have small binding energies, Ry=n2, where Ry is the

Rydberg constant. More important, the energy spacing

between adjacent n levels is 2 Ry=n3, which changes

slowly with n. Thus, the Rydberg levels are approximately

evenly spaced, and the orbital, or Kepler motion of the

electron in a wave packet with an average principal quan-

tum number �n occurs at the Kepler frequency fK ¼
2 Ry=h �n3, where 2 Ry=h ¼ 6�58� 1�15 Hz. For �n ¼ 72,

fK ¼ 17�6 GHz. In Ref. [4], the Rydberg wave packets

made were radial wave packets in which coherent super-

positions of typically five np states were created, and the

radial probability distribution breathed in and out at fK,
while maintaining p character [4]. More complex excita-

tion schemes combining laser excitation with short unipo-

lar pulses, often termed half-cycle pulses (HCP) [5–7],

have been used to generate angularly localized wave pack-

ets in which the electron oscillates in an approximately

linear or circular orbit [8,9].

As pointed out by Lorentz, the initial localization of the

wave packet persists only for the harmonic oscillator, with

its evenly spaced energy levels [10]. If, as in the Rydberg

states, the levels are not evenly spaced the initially local-

ized wave packet becomes dispersed in space, typically

after five or ten orbits [11]. With a finite number of states,

the spatial localization can revive, but eventually, decoher-

ence destroys the localization, with the result that at most

tens of orbits are observed, and the typical lifetime of a

Rydberg wave packet is 100 ps [12]. Bialynicki-Birula

et al. suggested that it should be possible to create a

long-lived nondispersing circular wave packet by adding

a weak circularly polarized field at the Kepler frequency to

phase-lock the motion of the Rydberg electron [13].

Adding a magnetic field and using a linearly instead of

circularly polarized field have also been proposed [14,15].

To date, nondispersing wave packets (NWP) have only

been made with linearly polarized microwaves [16–18]

and trains of HCPs [19], resulting in wave packets in which

the motion of the electron is roughly linear [20], more like

a mass oscillating on a spring than an electron in a Bohr

orbit.

Here we report a straightforward and robust way of

making nondispersing Bohr wave packets (NBWP). The

essence of the method is to create a nondispersing, ap-

proximately linearly oscillating wave packet phase-locked

to a linearly polarized microwave (MW) field and then

slowly change the MW polarization from linear to circu-

lar. We chose this approach based on the observation that

the electron’s motion in a NWP in a linearly polarized

MW-field remains phase locked either after a 40� change

in the MW frequency [17], or turning the MW field off and

then on again [21], the latter investigation suggested by

Hänsch [22].

The essential idea of NBWP can be understood by

considering an electron in a two-dimensional circular

Bohr orbit around an ion in the x-y plane (Fig. 1). The

combination of the Coulomb and centrifugal potentials

forms a circular potential trough in the x-y plane, in which
a classical electron with binding energy Ry=n2 circulates

about the ion at the Kepler frequency fK ¼ 2 Ry=n3.
If we add a circularly polarized MW field rotating in the

x-y plane at frequency fK, the potential seen by the elec-
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tron is tilted with a low point which rotates about the z axis
at fK, as shown schematically in Fig. 1. In its lowest energy

state the electron is localized at the low point, which rotates

about the ion at fK, and will remain there indefinitely.

In the experiment, Li atoms in a thermal beam in a

vacuum chamber pass through a 17.564 GHz Fabry-Pérot

MW cavity as shown in Fig. 2(a). The atoms are excited at

the center of the cavity by three 5-ns laser pulses to np
states of 7� � n � 75 via the route 2s� 2p� 3s� np.
The dye lasers are pumped by the first of two Nd:YAG

lasers running at a 20-Hz repetition rate. Subsequent to the

laser excitation the atoms are exposed to a combination of

x- and y-polarized MW pulses. One such combination is

shown in Fig. 2(b). First a pulse is injected through the

upper mirror of the cavity, producing a y-polarized MW

field. If the Kepler frequency of the atom is within

500 MHz of the MW frequency, a 1 V=cm MW field

converts the atoms in the np state to a NWP in which the

electron’s motion is approximately one dimensional and

phase-locked to the oscillating field, as shown in Fig. 2(c).

Then a secondMW pulse is injected into the cavity through

the lower mirror to produce a field polarized in the x
direction, the phase of which is shifted by 90� from the

y-polarized field. As the amplitude of the x-polarized field

rises to match that of the y-polarized field the MW polar-

ization changes from linear to circular. The electron’s

motion is locked to the field and evolves from a linear to

a circular orbit, as shown in Fig. 2(c).

To detect that the Rydberg atom has been converted

from an np eigenstate to a linearly oscillating wave packet

and then to a circular wave packet we observe the time

variation of the x or y momentum of the electron with a

1=2-ps HCP, which is short compared to the 56-ps period

of the Kepler orbit and the MW-field cycle. The HCP can

be polarized in either the x or y direction. Typically the

amplitude of, for example, an x-polarized HCP is set to

ionize those atoms in which the electron has x momentum

px > �. We detect the remaining Rydberg atoms not ion-

ized by the HCP by applying a field-ionization pulse after

the HCP, as shown by Fig. 2(b). A negative voltage pulse is

applied to the lower cavity mirror to field ionize the atoms

and drive the resulting electrons through a hole in the upper

cavity mirror to a dual microchannel-plate (MCP) detector

[23]. The detector output is recorded with a gated integra-

tor as the fine time delay of the HCP relative to the MW

field is scanned. If the atom is in an energy eigenstate and
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FIG. 2 (color online). Schematic diagram of the experiments.

(a) The Li atomic beam passes through the center of the Fabry-

Pérot MW cavity where it is excited by the dye-laser pulses. The

x- and y-polarized MW fields are injected into the cavity through

the mirrors, and a field-ionization pulse applied to the lower

mirror ionizes the Rydberg atoms and ejects the resulting elec-

trons for detection. (b) Timing diagram. After the dye-laser

excitation a y-polarized MW pulse is injected into the cavity

(—), then an overlapping 90�-phase shifted x-polarized pulse of

the equal amplitude (- - -). Finally, a field-ionization pulse is

applied to the lower mirror. The time-resolved momentum is

sampled at times (1) to (4), when the MW field is zero,

y-polarized, circularly polarized, and x-polarized, respectively.
(c) The Rydberg electron orbits at times (1) to (4) showing the

evolution from an eigenstate to y-polarized linear, then circular,

and finally x-polarized linear wave packets.
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FIG. 1 (color online). Schematic diagram of the nondispersing

Bohr wave packet showing the low point in the potential which

rotates about the ion core.

PRL 102� 103001 (2009) P HY S I CA L REV I EW LE T T E R S
week ending

13 MARCH 2009

103001-2



A Nondispersing Bohr Wave Packets 125

the electron’s motion is not phase-locked to the MW field

there is no variation in the signal, but if the atom has

become a NWP there is a variation with the 56-ps period

of the MW field [16,18].

The Fabry-Pérot cavity is composed of two 82-mm-

diameter brass mirrors of 102-mm radius of curvature

with an on axis separation of 25.6 or 42.7 mm. The cavity

is operated at 17.564 GHz on the TE 002 or TE 004 mode,

with a typical cavity Q of 3800 and a filling time of 35 ns.

The source of the MW field is a Hewlett Packard 8350B/

83550A sweep oscillator which is amplified by a MITEQ

solid-state or Hughes traveling-wave-tube amplifier to a

power of up to 300 mW.

The HCP is generated when an amplified 200 fs, 810 nm

Ti:sapphire laser pulse strikes a biased GaAs wafer. The

MWoscillator is phase locked to the 230th harmonic of the

76 MHz repetition rate of the mode-locked Ti:sapphire

oscillator. The coarse timing of the HCP is set by the

electronic delay of the second Nd:YAG laser, which pumps

the Ti:sapphire amplifier, and the fine delay is varied with

an optical delay line for the 810 nm pulse. The jitter

between the HCP and the MW field is 5 ps.

In Fig. 3 we show the transformation of Li atoms in the

72p eigenstate into a wave packet oscillating linearly in the

y direction, then to a circularly polarized Bohr wave

packet, and finally to a wave packet oscillating linearly

in the x direction, as shown schematically in Fig. 2(c). The

MW field amplitudes of the x- and y-polarized fields

are �1 V=cm, far smaller than the typical atomic field,

/1=n4, felt by the Rydberg electron, 191 V=cm for

n ¼ 72. Specifically, we show the result of exposing atoms

initially excited to the 72p state in zero field to the MW

pulse shown in Fig. 2(b), a MW field initially polarized in

the y direction, then circularly polarized, and finally po-

larized in the x direction.

We expose the atoms to x- and y-polarized HCPs at the

four different times indicated in Fig. 2(b). The ionization

produced by the HCP is detected as the fine delay of the

HCP relative to the MW field is slowly scanned over many

laser shots. If the HCP arrives before the MW pulse (1), we

see no variation in the signal as the delay of the HCP is

scanned for either polarization, as expected; the atoms are

in the 72p state, an eigenstate. If the HCP arrives at (2),

when only the y-polarized field is present, we observe the

signals shown in Figs. 3(a) and 3(b). A strong modulation

is observed with the y-polarized HCP but essentially none

with the x-polarized HCP, as expected for a phase-locked

wave packet oscillating in the y direction. We attribute the

very weak modulation of Fig. 3(b) to a slight misalignment

of the MW and HCP polarizations. If the HCP arrives at

(3), when the field is circularly polarized, we observe the

signals of Figs. 3(c) and 3(d). Modulation in the signal is

seen for both polarizations, with a relative phase shift

between them of 90�, as expected for a nondispersing

circularly polarized Bohr wave packet. It is also apparent

that the modulations of both signals are smaller than the

y-polarized signal of Fig. 3(a) by approximately
���

2
p

, which

is consistent with the fact that the peak momenta in the x

and y directions are reduced by
���

2
p

. Finally, if the HCP

arrives at (4) a clear modulation is observed in the signal
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FIG. 3. Signals observed when atoms are exposed to y- and

x-polarized HCPs and the fine time delay is scanned at the 4

times at the times of (2), (3), and (4) of Fig. 2(b). At time (2),

with a y-polarized MW field (a) y-polarized HCP shows motion

in the y direction, but (b) obtained with an x-polarized HCP

shows no motion. At time (3), with a circular polariza-

tion, (c) y-polarized HCP and (d) x-polarized HCP both show

motion, with a phase shift. At time (4), x-polarized MW field,

(e) y-polarized HCP shows no y motion, but (f) the x-polarized

HCP shows x motion.
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from the x-polarized HCP, as shown by Fig. 3(f), but not

the y-polarized HCP, as shown by Fig. 3(e), indicating that

there is now a NWP oscillating in the x direction. The

polarization of the NWP has been changed from linear to

circular to the orthogonal linear polarization by performing

the same transformation on the MW field to which the

wave packet is phase locked.

A circularly polarized wave packet can have left or right

circular polarization, and in Fig. 4 we show the result of

turning on the x-polarized field of Fig. 2(b) with phase

shifts of �9�
�. As shown, when the atoms are exposed to

an x-polarized HCP at (3) of Fig. 2(b) the modulation

exhibits a 180�-phase shift, while the modulation from

the y-polarized HCP is unchanged, as expected for left-

and right-hand circularly polarized wave packets.

In conclusion, we report the first observation of NBWP.

The technique we have used is relatively simple and robust,

and it is possible to make long-lived wave packets which

can be used in other experiments. For example, one can

imagine using the synchronized electron motion as the

basis of phase sensitive detection. More generally, this

work shows that it is straightforward to take advantage of

the fact that a NWP is phase-locked to the MW field to

manipulate the wave packet using the polarization, ampli-

tude, and frequency of the MW field.
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FIG. 4. Signals observed in right- and left-circularly polarized

fields, time (3) of Fig. 2(b), when scanning the fine delay of the

x-polarized HCP. (a) x-polarized MW field phase shifted by 90�.

(b) x-polarized field phase shifted by �9��.
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Coherent Population Transfer in an Atom by Multiphoton Adiabatic Rapid Passage

H. Maeda, J. H. Gurian, D. V. L. Norum, and T. F. Gallagher

Department of Physics, University of Virginia, Charlottesville, Virginia 22904-0714, USA
(Received 2 August 2005; published 23 February 2006)

Coherent population transfer in an atom using a sequence of adiabatic rapid passages through single-
photon resonances is well-known, but it requires that the frequency sweep match the changing frequencies
of the atomic transitions. The same population transfer can be effected via a single multiphoton adiabatic
rapid passage, which requires only a small frequency sweep, if it is possible to select the desired
multiphoton transition from the many possible transitions. Here we report the observation of population
transfer between Rydberg states by high order multiphoton adiabatic rapid passage.

DOI: 10.1103/PhysRevLett.96.073002 PACS numbers: 32.80.Rm, 32.80.Bx, 32.80.Qk

Adiabatic rapid passage (ARP) is an approximately
100% efficient way to transfer population from one state
to another, which makes coherent population transfer using
a sequence of ARP’s practical. Examples are using a
chirped infrared-laser pulse to make a sequence of vibra-
tional transitions in a slightly anharmonic diatomic mole-
cule [1–3], the production of circular states by a sequence
of �m � �1 or �1 microwave (MW) transitions [4], and
using a chirped MW pulse to change the principal quantum
number n of atomic Rydberg states [5–7]. In the above
examples the frequency of the atomic or molecular motion,
i.e., the single-photon transition frequency, follows the
changing frequency of the radiation. Consider the example
of Fig. 1(a), a Rydberg atom initially in the state of n � 72,
which has a Kepler or �n � 1 transition frequency of
17.3 GHz. If this atom is exposed to a MW pulse chirped
from 17.5 to 12 GHz it undergoes a sequence of ARP’s up
in n to the n � 82 state, which has a Kepler frequency of
12.2 GHz.

Here we report an alternative method of coherent popu-
lation transfer, in which we replace the sequence of ARP’s
of single-photon transitions with ARP of a single multi-
photon transition. For example, replacing the sequence of
one-photon ARP’s of Fig. 1(a) by ARP of the ten-photon
n � 72 to n � 82 transition at 15.2 GHz [see Fig. 1(b)].
Using a multiphoton transition necessitates higher power,
but, since there is only one transition, the range of the
frequency sweep can be dramatically reduced. The advan-
tages of using ARP’s of multiphoton transitions for coher-
ent population transfer were first suggested by Oreg et al.
[8], and more recently by Gibson [9]. A well-known ex-
ample is the ‘‘counterintuitive’’ pulse sequence [10], which
leads to coherent population transfer in three-level systems
by ARP of a two-photon transition, as demonstrated by
Broers et al. [11]. The measurements reported here can be
thought of as a multiphoton generalization of the counter-
intuitive pulse sequence, and they demonstrate that ARP
using multiphoton transitions is, in fact, quite robust. In the
sections which follow we outline the essential idea, de-
scribe our experiments, and discuss the implications.

A useful way of describing ARP is as an adiabatic
traversal of an avoided crossing of Floquet levels [12].
We calculate the Floquet energy levels using a one-
dimensional model for the atom in which the energy W
is given by W � �1=2n2 and the matrix element coupling
adjacent n states by hnjxjn� 1i � 0:3n2. We use atomic
units, unless specified otherwise. A one-dimensional
model provides a good description of Rydberg atoms in
strong, linearly polarized MW fields [13,14].

In zero MW field the Floquet (or dressed-state) energy
of each n state is given by

W � �1=2n2 � �n� 75�!; (1)

where ! is the MW angular frequency. The n � 75 energy
is frequency independent, and the n � 73 energy, for ex-
ample, increases twice as rapidly as the MW frequency
[see Fig. 2(a)]. In Fig. 1(b) we show the n � 72 and n � 82
Floquet levels as a function of MW frequency near the ten-
photon n � 72–82 resonance at 15.2 GHz. In zero MW
field the two levels cross, as shown by the broken lines, and
as shown by the solid lines, in a MW field of 3 V=cm there
is an avoided crossing of magnitude �10 � 0:5 GHz,
which is the ten-photon Rabi frequency. ARP from n �
72 to 82 can be effected by sweeping the frequency through
the ten-photon resonance in either direction as shown by
the two arrows in Fig. 1(b).

The probability of ARP through an isolated k-photon
resonance with a linear frequency sweep S is given by
Pk � exp���2�2

k=kS�, where �k is the magnitude of
the avoided crossing in GHz and S is given in GHz=ns.
The requirement for ARP is

�k >

������

kS
p

�
: (2)

In our experiments S � 0:012 GHz=ns, so �k for k � 1
and 10 Eq. (2) requires �1 > 35 MHz and �10 >
110 MHz, respectively. For k � 1 �k � 0:3n2E, in which
E is the MW-field amplitude, and for k > 1 an approximate
requirement is that 0:3n2E=�d � 1 where �d is the largest
detuning from an intermediate-state resonance. For a
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k-photon transition the variation in the �n � 1 frequency,

1=n3, leads to �d � 3k=2n4 and E � 5k=n6. Thus the
requisite MW field E increases linearly with k, for k > 1.

This simple model suggests that for n � 75 the required

fields are 18 mV=cm and 1:4 V=cm for k � 1 and 10.

From Eq. (1) it is apparent that the minimum required

frequency sweep is

�� �
2�k

k
; (3)

which decreases as 1=
���

k
p

and is�22 MHz for our slew rate

and k � 10. For the avoided crossing shown in Fig. 1(b),

with E � 3 V=cm, the minimum sweep is � 100 MHz.

The ten-photon avoided crossing shown in Fig. 1(b) does

not exist in isolation but is surrounded by other level

crossings of both higher and lower order. Whether or not

this avoided crossing is accessible is a crucial question. To

address it we show in Fig. 2 the calculated Floquet energy

levels for n� 75 vs the frequency of the MW field. As

shown in Fig. 2(a) in zero MW field the k-photon, �n � k
resonances appear as level crossings. The one-photon

�n � 1 resonances lie along the top of the energy levels

shown in Fig. 2(a). The k > 1 resonances lie below them.

The �n � 10 resonance between the n � 72 and n � 82

levels of Fig. 1(b) occurs where the levels cross at

15.2 GHz. In Fig. 2(b) we show the same levels with a

MW field of amplitude 3 V=cm. All level crossings be-
come avoided crossings, and at this field the sequences of

�n � k avoided crossings for k � 8 become smooth

curves. For �n � k � 10 there are recognizable avoided

crossings, and for �n � 11 the size of the avoided cross-

ings decreases by an order of magnitude for an increase in

�n of one, producing avoided crossings invisible on the

scale of Fig. 2. As shown by point A in Fig. 2(b) the ten-

photon avoided crossing of Fig. 1(b) is by no means

isolated, but we can use it to effect population transfer.

The requirement is that it be traversed adiabatically and all

other avoided crossings diabatically. An obvious approach
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FIG. 2. (a) Floquet energy levels as defined in Eq. (1) for 60 �
n � 84 vs MW frequency in zero MW field. The n � 69, 70, 71,

75, 80, and 81 levels are labeled. The �n � 1 resonances are the

highest lying level crossings, and �n > 1 crossings are lower in

energy. (b) With a MWamplitude of 3 V=cm, the �n � k, k � 8

avoided crossings become smooth curves, the �n � 10 avoided

crossings are recognizable as isolated avoided-level crossings,

and the �n � 11 avoided crossings are invisible on this scale.

n � 72–82 ten-photon avoided crossing is denoted as A at

15.2 GHz. With a 19 ! 13 GHz chirped pulse the atoms in

level B pass to D through C.
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is a Gaussian pulse swept from 15.1 to 15.3 GHz with a

peak amplitude of 3 V=cm.

In the experiment a beam of ground state Li atoms

passes through a WR62 waveguide where the atoms are

excited to np states by three 5 ns laser pulses using the

sequence 2s ! 2p ! 3s ! np. They are then exposed to

a frequency swept MW pulse. Finally, a voltage ramp

rising in 1100 ns is applied to a septum in the waveguide

for selective field ionization. The electrons resulting from

field ionization are ejected through a hole in the top of the

waveguide and are detected with a dual microchannel-plate

detector. Since the electrons have negligible flight time and

atoms ionize at F � 1=9n4 [15], the time-resolved electron

signal allows us to determine the final n-state distribution.
To produce the chirped MW pulse we use a voltage-

controlled oscillator, whose frequency varies from 13 to

19 GHz as the control voltage is changed from 2 to 15.5 V.

We use its maximum sweep rate of 0.012 GHz. The typical

output power is 10 mW. Using a control pulse from an

arbitrary waveform generator and a pair of mixers in series

we form the output into a swept pulse from 50 to 500 ns

long. The pulse is amplified to powers as high as 300 mW

with a solid-state amplifier and transported to the wave-

guide in the vacuum system.

As noted earlier, a Gaussian pulse should be nearly ideal,

and using a 1 V, 50-ns-long Gaussian control pulse from

the arbitrary waveform generator we have generated a

swept pulse centered at 15.2 GHz. In Fig. 3 we show the

population transfer observed when starting with n � 72

atoms and exposing them to this pulse. Figure 3 is com-

posed of oscilloscope traces of the time-resolved field-

ionization signals observed with no pulse (dashed line),

and pulses with a peak amplitudes of 2 V=cm (dotted line)

and 3 V=cm (solid line). For no pulse, and pulses of peak

amplitude <1 V=cm no population transfer is observed

and the signal is observed at t � 800 ns. For a peak am-

plitude of 2 V=cm, almost half the signal is observed at t �
640 ns, corresponding to population transfer to n � 83.

For a peak amplitude of 3 V=cm> 80% of the population

is transferred to n � 83. At higher fields the population

transfer decreases, as expected. We have changed n by

�11 using a MW pulse which is only chirped by

600 MHz in 50 ns. Using the Gaussian pulse used in the

population transfer of Fig. 3 leads to about half as much

transfer for initial n � 71 and 73 states and no transfer for

initial n � 70 and 74 states.

One of the reasons for using a short frequency sweep is

to minimize the number of avoided crossings encountered

to ensure that only the desired avoided crossing is traversed

adiabatically, but the sweep need not be short. With prop-

erly chosen pulses swept over 6 GHz the atom will find the

desired avoided crossing itself. In Fig. 4 we show the

population transfers observed with 500-ns-long constant

amplitude pulses swept in both directions between 13 and

19 GHz. The data shown in each panel are gray-scale

representations of time-resolved field-ionization signals

for amplitudes of MW field E from 0.015 to 15 V=cm. In

Fig. 4(a) we show the result of exposing n � 80 atoms to a

19 ! 13 GHz chirp. As E increases from 0.1 to 3 V=cm
the change in n increases from 0 to 10. How this population

transfer occurs whenE � 3 V=cmmay be understood with

the aid of Fig. 2(b). The atoms pass diabatically from

point B to C, where ARP occurs, followed by a diabatic

passage to point D. Figure 4(b) shows the analogous result

for n � 73 atoms exposed to a pulse chirped from 13 to

19 GHz. In Figs. 4(a) and 4(b) the change in n increases

with the MW-field amplitude and is approximately equal to

the number of levels coupled together by the MWfield, i.e.,

the number of smooth energy-level curves at the top of

Fig. 2(b). It is as if the atoms follow diabatic trajectories

which are reflected from the smooth curves of Fig. 2(b).

This observation can be understood by considering the

requirement for an adiabatic passage given by Eq. (2). In

the chirped pulses used in obtaining the data of Figs. 4(a)

and 4(b) the first and only avoided crossing to be traversed

adiabatically is the one just below the smooth curves. By

calculating the Floquet level structure, and thus �k, for

different microwave fields we can predict the �n of the

population transfer for a given field amplitude. The results

of these calculations for the conditions of, for example,

Fig. 4(a) are in good agreement with our observations, as

shown.With a 6 GHz sweep we can select�n, independent
of n over a range of n, by the MW-field amplitude.

The multiphoton ARP approach described here allows

rapid, efficient population transfer over many n states with

easily generated pulses. One can envision using several

such pulses, centered at different frequencies, to effect still

larger changes in n on a 1 �s time scale, which could be

quite useful for transporting recombined antihydrogen to
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FIG. 3. Time-resolved field-ionization signals obtained subse-

quent to exposing n � 72 atoms to a 50 ns, �0:012 GHz=ns
chirped pulse centered at 15.2 GHz, so that only �600 MHz of

chirp is required. For pulse amplitude zero (dashed line), the

atoms stay in the n � 72 state. For pulse amplitude 2 V=cm
(dotted line), roughly 40% of the atoms are transferred to n �

83. With pulse amplitude 3 V=cm (solid line), more than 80% of

the atoms are transferred to n � 83.
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lower lying states [16]. More generally, this work suggests

that it may actually be simpler to use a single multiphoton

resonance than a sequence of single-photon resonances

since only a small chirp is required. Furthermore, this

process is robust; it works in spite of the presence of

many levels which we have ignored. Since it is straightfor-

ward to generate tailored laser pulses [17–19], especially

ones with Gaussian intensity profiles and prescribed chirps,

this approach should be applicable to other physical sys-

tems [2,9]. For example, laser excitation of a high vibra-

tional state of a diatomic molecule using one multiphoton

transition rather than a sequence of single-photon transi-

tions is a case almost identical to this one.
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