Direct observation of a resonant 4-body interaction in cold Rydberg atoms

J. H. Gurian, P. Cheinet, P. Huillery, A. Fioretti, J. Zhao, P. L. Gould, D. Comparat, P. Pillet

Laboratoire Aimé Cotton

23 November 2011

Introduction Experiment Model Conclusions

The Cold Rydberg Team

Daniel Comparat

Senior Researcher

Pierre Pillet Director

Phil Gould Visitor

Jianming Zhao

Visitor

Patrick Cheinet Junior Researcher

Andrea Fioretti Senior Researcher

Paul Huillery PhD Student

Joshua Gurian Post-Doc

Introduction to Rydberg Atoms

Introduction to Rydberg Atoms

Properties of Rydberg Atoms For n=100: V = -1/r► W = -1.4 meV $W = \frac{-1}{2n^2}$ ► < $r >= 0.5 \,\mu \text{m}$ $r \propto n^2$ $\blacktriangleright \tau = 1 \,\mathrm{ms}$ Lifetime $\propto n^3$ • $\omega_{kepler} = 2\pi \times 6.5 \,\mathrm{GHz}$ \blacktriangleright E_{ionization} = 5.7 V/cm $\omega_{kepler} \propto 1/n^3$ $E_{ionization} \propto 1/n^4$

Rydberg Atoms Dipole Interaction Motivation

Huge Dipole Moments

Dipole-Dipole Interaction

Dipole-Dipole Energy Transfer

Dipole-Dipole Energy Transfer

Rydberg Atoms Dipole Interaction Motivation

Dipole Energy Transfer

VOLUME 47, NUMBER 6 PHYSICAL REVIEW LETTERS

10 AUGUST 1981

Resonant Rydberg-Atom-Rydberg-Atom Collisions

K. A. Safinya,⁴³ J. F. Delpech,⁴⁵ F. Gounand,⁴⁵ W. Sandner,⁴⁰ and T. F. Gallagher Molecular Physics Laboratory, SRI International, Menlo Park, California 94025 (Received 22 June 1981)

VOLUME 80, NUMBER 2

PHYSICAL REVIEW LETTERS

12 JANUARY 1998

Resonant Dipole-Dipole Energy Transfer in a Nearly Frozen Rydberg Gas

W. R. Anderson,* J. R. Veale, and T. F. Gallagher Department of Physics, University of Virginia, Charlottesville, Virginia 22901 (Received 4 August 1997)

VOLUME 80, NUMBER 2 PHYSICAL REVIEW LETTERS

12 JANUARY 1998

Many-Body Effects in a Frozen Rydberg Gas

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum,* V. M. Akulin,[†] and P. Pillet Laboratoire Aimé Cotton, CNRS II, Båt. 505, Campus d'Orsay, 91405 Orsay Cedex, France (Received 4 August 1997)

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction

Introduction Experiment Model Conclusions Rydberg Atoms Dipole Interaction Motivation

Förster Resonance Energy Transfer

Analogous to FRET in biochemistry

D. W. Piston, M. E. Dickinson, & M. W. Davidson, FRET Microscopy with Spectral Imaging

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction

Dipole Blockade

Dipole interaction prevents excitation of multiple Rydberg atoms

K. Singer *et al.*, PRL (2004).
D. Tong *et al.*, PRL (2004).
T. Vogt *et al.*, PRL (2006).

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction

Rydberg CNOT Gates

L. Isenhower et al. PRL 104 (2010), T. Wilk et al. PRL 104 (2010).

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction

Many-body influence

Many-body effects can cause computation errors beyond 15%

Noel Group: $31d + 31d \rightarrow 33p + 29k$ Require up nine atoms to explain their 2-body results Weidemüller Group: $\begin{array}{l} 32p_{3/2}+32p_{3/2}\rightarrow 32s+33s\\ \text{Require 4-10 atoms to explain}\\ \text{their 2-body results} \end{array}$

Can we directly observe a many-body Rydberg energy transfer?

A. Mizal & D. Lidar, PRL 92 (2004).
T. J. Carroll, S. Sunder, & M. W. Noel, PRA 73 (2006).
S. Westermann *et al.* Eur. Phys. J. D 40 (2006).

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction

Cs Stark Map

Cs Stark Map

Energy Difference

80.4 V/cm

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction 13 / 27

Energy Difference

Apparatus

- Background loaded Cs MOT
- Four parallel wire grids
- Two MCP detectors for ion and electron detection
- TOF and charged particle imaging

Rydberg Excitation

- ▶ $6s \rightarrow 6p \rightarrow 7s \rightarrow np$
- Excite $2 \times 10^5 \ 23p$ atoms
- ▶ $260\,\mu{\rm m}$ diameter gaussian cloud
- ▶ Peak density $9 \times 10^9 \, {\rm cm}^{-3}$

Field Ionization

Field Ionization

Oscilloscope Traces

J.H. Gurian (Laboratoire Aimé Cotton)

Two Body Resonances

 $4 \times 23p_{3/2} \to 2 \times 23s + 23p_{1/2} + 23d_{5/2}$

Intensity

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction

True 4-body process?

 $|m_f| = 3/2$ Comparison

J.H. Gurian (Laboratoire Aimé Cotton)

Toy Model

Assume dipole couplings V_{ij} , average over Gamma distribution.

Toy Model

Assume dipole couplings V_{ij} , average over Gamma distribution.

Toy Model

Assume dipole couplings V_{ij} , average over cubic Gamma distribution.

Toy Model Results

Toy Model Comparison

Next Steps

Requires two excitation lasers to excite both $|m| = \frac{1}{2}$ and $|m| = \frac{3}{2}$

Conclusions

- Observation of direct product of Stark-tuned 4-body Rydberg interaction
 - Density scaling approaching n^4
 - ► On-res. 4-body process > Off-res. 2-body process
 - ► J.H. Gurian *et al.* PRL (arxiv:1111.2488)
- ► Next: Two color 4-body resonance
- Future: Further control multibody Rydberg interaction via RF or B-field.

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction

D. A. Steck, "Cesium D Line Data" J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction

D. A. Steck, "Cesium D Line Data" J.H. Gurian (Laboratoire Aimé Cotton)

Magentic Trapping

 $\text{Einstein's } A \text{ coefficient: } A_{n'\ell',n\ell} = \tfrac{4}{3} \omega^3_{n\ell,n'\ell'} \tfrac{\ell_{max}}{2\ell+1} |\langle n'\ell'|r|n\ell\rangle|^2$

As
$$n \to \infty$$
, $\omega \to \text{constant.}$
 $\langle \text{ground state} | r | n \ell \rangle \propto n^{-3/2}$
 $\tau_{n\ell} = \left[\sum_{n'\ell'} A_{n'\ell',n\ell} \right]^{-1}$
 $\tau \propto n^3$

This ignores blackbody radiation and ℓ scaling!

▲ Return to Talk

Any atom with one or more electrons of large principal quantum number n, where n > 10.

This Talk: $23 \le n \le 306$

J.H. Gurian (Laboratoire Aimé Cotton)

Rydberg Resonant 4-Body Interaction 33 / 27