Resonant four-body interaction in cold Rydberg atoms

Joshua H. Gurian

Laboratoire Aimé Cotton Centre National de la Recherche Scientifique Orsay, France

09 December 2011

Introduction Experiment Results Model Conclusions

The Cold Rydberg Team

Pierre Pillet Director

Daniel Comparat Senior Researcher

Phil Gould Visitor

Jianming Zhao Visitor

Ø

Patrick Cheinet Junior Researcher

Andrea Fioretti Senior Researcher

Paul Huillery PhD Student

Joshua Gurian Post-Doc

Outline

Introduction to Rydberg Physics Rydberg Atoms Dipole Interaction Motivation

Experiment

How to cool atoms in a MOT Our Experimental Setup

Results

|m| = 1/2|m| = 3/2

Model

Introduction

Results

Comparison with Experimental Results

Conclusions

Introduction Experiment Results Model Conclusions

Rydberg Atoms Dipole Interaction Motivation

What's a Rydberg Atom?

Any atom with one or more electrons of large principal quantum number n, where n > 10.

This Talk: $n \approx 23$

Introduction to Rydberg Atoms

Introduction to Rydberg Atoms

Field Ionization

Field Ionization

Introduction Experiment Results Model Conclusions

Rydberg Atoms Dipole Interaction Motivation

Huge Dipole Moments

Dipole-Dipole Interaction

Anisotropic Interaction:
$$V_{12} = \frac{\vec{\mu_1} \cdot \vec{\mu_2} - 3(\vec{\mu_1} \cdot \hat{R})(\vec{\mu_2} \cdot \hat{R})}{R^3}$$

T.J. Carroll *et al.* PRL (2004).

J.H. Gurian

Rydberg 4-Body

Dipole-Dipole Energy Transfer

Dipole-Dipole Energy Transfer

Rydberg Atoms Dipole Interaction Motivation

Dipole Energy Transfer

VOLUME 47, NUMBER 6 PHYSICAL REVIEW LETTERS

10 AUGUST 1981

Resonant Rydberg-Atom-Rydberg-Atom Collisions

K. A. Safinya,⁽⁴⁾ J. F. Delpech,^(b) F. Gounand,^(c) W. Sandner,^(d) and T. F. Gallagher Molecular Physics Laboratory, SRI International, Menlo Park, California 94025 (Received 22 June 1981)

VOLUME 80, NUMBER 2

PHYSICAL REVIEW LETTERS

12 JANUARY 1998

Resonant Dipole-Dipole Energy Transfer in a Nearly Frozen Rydberg Gas

W. R. Anderson,* J. R. Veale, and T. F. Gallagher Department of Physics, University of Virginia, Charlottesville, Virginia 22901 (Received 4 August 1997)

VOLUME 80, NUMBER 2 PHYSICAL REVIEW LETTERS

12 JANUARY 1998

Many-Body Effects in a Frozen Rydberg Gas

I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P. Nosbaum,* V. M. Akulin,[†] and P. Pillet Laboratoire Aimé Cotton, CNRS II, Båt. 505, Campus d'Orsay, 91405 Orsay Cedex, France (Received 4 August 1997)

Introduction Experiment Results Model Conclusions

Rydberg Atoms Dipole Interaction Motivation

Förster Resonance Energy Transfer

Analogous to FRET in biochemistry

D. W. Piston, M. E. Dickinson, & M. W. Davidson, *FRET Microscopy* with Spectral Imaging

Dipole Blockade

Dipole interaction prevents excitation of multiple Rydberg atoms

K. Singer et al., PRL (2004). D. Tong et al., PRL (2004).

T. Vogt et al., PRL (2006). D. Comparat & P. Pillet JOSA B (2010).

Rydberg CNOT Gates

L. Isenhower et al. PRL 104 (2010), T. Wilk et al. PRL 104 (2010).

Collective Ensemble

Saffman & Co. estimate possible entanglement of up to 470 qubits.

M. Saffman & K. Mølmer, PRA (2008). M. Saffman, T.G. Walker & K. Mølmer, RMP (2010). J.H. Gurian Rydberg 4-Body

Many-body influence

Mizel & Lidar: Many-body effects can cause errors beyond 15%

Noel Group: $31d + 31d \rightarrow 33p + 29k$ Require up nine atoms to explain their 2-body results Weidemüller Group: $\begin{array}{l} 32p_{3/2}+32p_{3/2}\rightarrow 32s+33s\\ \text{Require 4-10 atoms to explain}\\ \text{their 2-body results} \end{array}$

Can we directly observe a many-body Rydberg energy transfer?

A. Mizel & D. A. Lidar, PRL 92 (2004).

T. J. Carroll, S. Sunder, & M. W. Noel, PRA 73 (2006).

S. Westermann et al. Eur. Phys. J. D 40 (2006).

Cs Stark Map

Cs Stark Map

Energy Difference

Outline

Introduction to Rydberg Physics Rydberg Atoms Dipole Interaction Motivation

Experiment

How to cool atoms in a MOT Our Experimental Setup

Results

|m| = 1/2|m| = 3/2

Model

Introduction

Results

Comparison with Experimental Results

Conclusions

Cs Levels

D. A. Steck, "Cesium D Line Data"

J.H. Gurian

Rydberg 4-Body

Cs Levels

D. A. Steck, "Cesium D Line Data"

J.H. Gurian

Rydberg 4-Body

Magentic Trapping

J.H. Gurian Rydberg 4-Body

MOT Diagram

from J. Han, Dipole effects in a cold Rydberg gas. (2009). J.H. Gurian Rydberg 4-Body Exp. MOT

Apparatus

- Background loaded Cs MOT
- Four parallel wire grids
- Two MCP detectors for ion and electron detection
- TOF and charged particle imaging

Rydberg Excitation

- ▶ $6s \to 6p \to 7s \to np$
- Excite $2 \times 10^5 \ 23p$ atoms
- ▶ $260\,\mu{\rm m}$ diameter gaussian cloud
- ▶ Peak density $9 \times 10^9 \, {\rm cm}^{-3}$

SFI Analysis

Oscilloscope Traces

Experimental Timing

Outline

Introduction to Rydberg Physics Rydberg Atoms Dipole Interaction Motivation

Experiment

How to cool atoms in a MOT Our Experimental Setup

Results

 $\begin{aligned} |m| &= 1/2 \\ |m| &= 3/2 \end{aligned}$

Model

Introduction

Results

Comparison with Experimental Results

Conclusions

|m| = 1/2 |m| = 3/2

Two Body Resonances

J.H. Gurian Rydberg 4-Body

Introduction Experiment Results Model Conclusions |m| = 1/2 |m| = 3/2

 $4 \times 23p_{3/2} \to 2 \times 23s + 23p_{1/2} + 23d_{5/2}$

J.H. Gurian Rydberg 4-Body

|m| = 1/2 |m| = 3/2

Intensity

Introduction Experiment Results Model Conclusions

|m| = 1/2 |m| = 3/2

True 4-body process?

On-resonant 4-body process creates more 23d atoms than off-resonant two-body $s \to d$ process!

Introduction Experiment Results Model Conclusions |m| = 1/2 |m| = 3/2

 $23p_{\frac{3}{2}}|m|=\frac{3}{2}$ 4-Body Resonance

Introduction Experiment Results Model Conclusions

|m| = 1/2 |m| = 3/2

 $|m_f| = 3/2$ Comparison

Outline

Introduction to Rydberg Physics Rydberg Atoms Dipole Interaction Motivation

Experiment

How to cool atoms in a MOT Our Experimental Setup

Results

|m| = 1/2|m| = 3/2

Model

Introduction

Results

Comparison with Experimental Results

Conclusions

Toy Model

Assume dipole couplings V_{ij} , average over Gamma distribution.

Toy Model

Assume dipole couplings V_{ij} , average over Gamma distribution.

Toy Model

Assume dipole couplings V_{ij} , average over cubic Gamma distribution.

Introduction Results Exp. Comparison

Toy Model Results

Toy Model Comparison

Outline

Introduction to Rydberg Physics Rydberg Atoms Dipole Interaction Motivation

Experiment

How to cool atoms in a MOT Our Experimental Setup

Results

|m| = 1/2|m| = 3/2

Model

Introduction

Results

Comparison with Experimental Results

Conclusions

Next Steps

Requires two excitation lasers to excite both $|m| = \frac{1}{2}$ and $|m| = \frac{3}{2}$

J.H. Gurian Rydberg 4-Body

Conclusions

- Observation of direct product of Stark-tuned 4-body Rydberg interaction
 - Density scaling approaching n^4
 - ► On-res. 4-body process > Off-res. 2-body process
 - ► J.H. Gurian *et al.* PRL (arxiv:1111.2488)
- ► Next: Two color 4-body resonance
- Future: Further control multibody Rydberg interaction via RF or B-field.

Cs Stark Map

M. L. Zimmerman et al. PRA (1979).

Bohr Wavepacket Introduction Exp. Setup Results

Bohr Model

Creating A Wavepacket

Introduction Exp. Setup Results

MW Phase Locking

MW phase lock electron

MW Phase Locking

- MW phase lock electron
- Slowly increase 2nd MW field

MW Phase Locking

- MW phase lock electron
- Slowly increase 2nd MW field
- Long-lived circular Bohr orbit

Half-Cycle Pulses

R. R. Jones, D. You, & P. H. Bucksbaum, PRL 70 (1993).

Experimental Setup

Half-cycle Pulse Detection

Dunning's Bohr Atoms

J. J. Mestayer et al., PRA 79, (2009).

 $\text{Einstein's } A \text{ coefficient: } A_{n'\ell',n\ell} = \tfrac{4}{3} \omega^3_{n\ell,n'\ell'} \tfrac{\ell_{max}}{2\ell+1} |\langle n'\ell'|r|n\ell\rangle|^2$

As
$$n \to \infty$$
, $\omega \to \text{constant.}$
 $\langle \text{ground state} | r | n \ell \rangle \propto n^{-3/2}$
 $\tau_{n\ell} = \left[\sum_{n'\ell'} A_{n'\ell',n\ell} \right]^{-1}$
 $\tau \propto n^3$

This ignores blackbody radiation and ℓ scaling!

Gamma Distribution

52/41

Efimov States

Infinite series of excited three-body energy levels at the two-body dissociation threshold.

First predicted by Efimov in 1970... ... experimentally confirmed by Grimm *et al.* in 2005.

Tune the scattering parameter, *a*, via an applied B-field Tetramers observed in 2009!

F. Ferlaino & R. Grimm, Physics 3, 9 (2010)

J.H. Gurian

Rydberg 4-Body

